NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

SOFTWARE RE-ENGINEERING OF THE HUMAN
FACTORSANALYSISAND CLASSIFICATION SYSTEM —
(MAINTENANCE EXTENSION) USING OBJECT
ORIENTED METHODSIN A MICROSOFT
ENVIRONMENT

by

Thomas P. Flanders
and
Scott K. Tufts

September 2001

Thesis Advisor: Thomas Wu
Thesis Co-Advisor: ChrisEagle

Approved for public release; distribution is unlimited

Report Documentation Page

Report Date Report Type Dates Covered (from... to)
30 Sep 2001 N/A -

Title and Subtitle Contract Number

Software Re- engineering of the Human Factors Analysis

and Classification System (Maintenance Extension) Grant Number

Using Object Oriented Methods in a Microsoft

Environment. Program Element Number

Author (s) Project Number

Flanders, Thomas P. and Tufts, Scott K.
Task Number

Work Unit Number

Performing Or ganization Name(s) and Address(es) Performing Or ganization Report Number
Research Office Naval Postgraduate School Monterey,
Ca93943-5138

Sponsoring/M onitoring Agency Name(s) and Sponsor/Monitor’s Acronym(s)

Address(es)

Sponsor/Monitor’s Report Number (s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification Classification of thispage
unclassified unclassified

Classification of Abstract Limitation of Abstract
unclassified uu

Number of Pages
433

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leaveblank) | 2. REPORT DATE 3. REPORT TYPE AND DATESCOVERED
September 2001 Master’' sThesis

4. TITLE AND SUBTITLE: Software Re-engineering of the Human Factors | 5. FUNDING NUMBERS
Anadysis and Classification System — (Maintenance Extension) Using Object
Oriented Methods in a Microsoft Environment.

6. AUTHOR(S) Flanders, Thomas P. and Tufts, Scott K.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION REPORT
Monterey, CA 93943-5000 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | 10. SPONSORING / MONITORING
N/A AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited

13. ABSTRACT (maximum 200 words)

The purpose of this research is to technically evaluate, refine, and expand two existing aircraft safety management
information systems (one military and one civilian). The systems are used in the data collection, organization, query, analysis, and
reporting of maintenance errors that contribute to Aviation mishaps, equipment damage, and personnel injury. Both programs
implement the Human Factors Analysis and Classification System (HFACS) taxonomy model developed by the Naval Safety Center
(NSC) to capture aircrew errorsin Naval Aviation mishaps. The goal of this taxonomy is to identify areas for potential intervention by
fully describing factors that are precursors to aircraft accidents.

Requirements outlined by Dr. John K. Schmidt of the Naval Safety Center, in conjunction with funding by the National
Aeronautics & Space Administration, require that the system utilize a Microsoft Access based implementation. This research focuses
on meticulous software engineering to investigate the feasibility of adapting the current "structured” systems to Microsoft-based object
oriented architectures ensuring future scalability and increased potential for code-reuse.

Primary research questions investigated in this thesis include: 1) How can a Microsoft Access based implementation
provide multi-user access to the same database in a client-server environment while ensuring the ability to scale to a large number
(potentially thousands) of users? 2) How can the linguistic discontinuity associated with object-oriented concepts and non-object
oriented, flat relational databases be overcome when limited by the requirement for a Microoft Access based solution? 3) The current
military and civilian systems provide similar functionality, but use different database schema. How can object oriented methods be
implemented to provide a common interface to both types of data? 4) How should database schema be changed to provide the best
performance, scalability, and opportunity for code re-use? 5) In the past, Microsoft has deployed new versions of Microsoft Access
and Visual Basic that were not (fully) backwards compatible with previous versions. This caused great discontent among users of
applications designed to run under the older versions of these programs. How can our system(s) be designed to isolate them from
problems associated with new versions of Microsoft products? Specificaly, the pending release of Microsoft Office 2002, the new
SQL Server 2000 database engine, and Microsoft Visual Basic.NET.

This thesis describes our use of the Spiral Development Model to create a Microsoft Based solution for the Aviation Safety
School reguirements. We hypothesize that this research produced products that greatly enhance current HFACScapabilities and
provide the means to weather further changes in requirements and application platforms.

14. SUBJECT TERMS Auviation Safety, Microsoft Access, HFACS, HFACSME, Flanders, Tufts, | 15. NUMBER OF
FAA, Federa Aviation Administration, NASA, National Aeronautics and Space Administration PAGES

16. PRICE CODE

17. SECURITY 18. SECURITY 19. SECURITY 20. LIMITATION
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF OF ABSTRACT
REPORT PAGE ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Sandard Form 298 (Rev. 2-89)

Prescribed by ANS| Std. 239-18

THISPAGE INTENTIONALLY LEFT BLANK

Approved for public release; distribution is unlimited

SOFTWARE RE-ENGINEERING OF THE HUMAN FACTORS ANALYSIS AND
CLASSIFICATION SYSTEM - (MAINTENANCE EXTENSION) USING
OBJECT ORIENTED METHODS IN A MICROSOFT ENVIRONMENT

Thomas P. Flanders
Major, United States Army
B.S., Clarkson University, 1989
M.A., Webster University, 2000

Scott K. Tufts
Major, United States Army
B.S., United States Military Academy, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
September 2001

Author: /‘?"ﬁrlt. ﬂ‘\.

Thomas P. Flanders

Author: M %

7 Scott K. Tufts

Approved by: ij/

W, Thesis Advisor

-El.;]-‘;".i-ﬁﬂl'

Clris Eagle, Chaikshan

Computer Science Degartment

THISPAGE INTENTIONALLY LEFT BLANK

ABSTRACT

The purpose of this research is to technically evaluate, refine, and expand two
existing aircraft safety management information systems (one military and one civilian).
The systems are used in the data collection, organization, query, analysis, and reporting
of maintenance errors that contribute to Aviation mishaps, equipment damage, and
personnel injury. Both programs implement the Human Factors Analysis and
Classification System (HFACS) taxonomy model developed by the Naval Safety Center
(NSC) to capture aircrew errors in Naval Aviation mishaps. The goal of this taxonomy is
to identify areas for potential intervention by fully describing factors that are precursors
to aircraft accidents.

Requirements outlined by Dr. John K. Schmidt of the Naval Safety Center, in
conjunction with funding by the National Aeronautics & Space Administration, require
that the system utilize a Microsoft Access based implementation. This research focuses
on meticulous software engineering to investigate the feasibility of adapting the current
"structured" systems to Microsoft-based object oriented architectures ensuring future
scalability and increased potential for code-reuse.

Primary research questions investigated n this thesis include: 1) How can a
Microsoft Access based implementation provide multi- user access to the same database in
a client-server environment while ensuring the ability to scale to a large number
(potentially thousands) of users? 2) How can the linguistic discontinuity associated with
object-oriented concepts and non-object oriented, flat relational databases be overcome
when limited by the requirement for a Microsoft Access based solution? This problem is
commonly called "impedence Mismatch". 3) The current military and civilian systems
provide similar functionality, but use different database schema. How can object oriented
methods be implemented to provide a common interface to both types of data? 4) How
should database schema be changed to provide the best performance, scalability, and
opportunity for code re-use? 5) In the past, Microsoft has deployed new versions of
Microsoft Access and Visual Basic that were not (fully) backwards compatible with

previous versions. This caused great discontent among users of applications designed to
v

run under the older versions of these programs. How can our system(s) be designed to
isolate them from problems associated with new versions of Microsoft products?
Specifically, the pending release of Microsoft Office 2002, the new SQL Server 2000
database engine, and Microsoft Visual Basic.NET.

This thesis describes our use of the Spira Development Model to create a
Microsoft Based solution for the Aviation Safety School requirements. We hypothesize
that the prototype produced as a part of our research will greatly enhance current
HFACS-capabilities and provide the means to weather further changes in requirements

and application platforms.

vi

TABLE OF CONTENTS

VI SO 1 L L I 1 | 1
A. BACKGROUNDoouiiiiiiiieienie ettt sttt s 1
B. AREA OF RESEARCH/SCOPEccoiieieieieenese s 5
C. REQUIREMENTS ...ttt 6
D. METHODOLOGY ..ottt st sresne e 11
1 Phase | - RequirementS AnalysiS......cccccoveveeiiecciiecie e 11

2. Phase |l - System Foundation Development/Implementation....... 12

3. Phaselll - HFACS-ME Development/Implementation.................. 12

4, PhaselV - Test and ANalYSIS.......ccooveievieiecie e 12

E. ASSUMPTIONS. ..ottt st a et sresnennens 12
F. DEFINITIONS ...ttt st nenne s 12
G. ORGANIZATION ..ottt sttt nbe s 13
REQUIREMENTS ANALYSIS ..ot 15
A. OVERVIEW ..ottt st st ae st snesnenneens 15
B. USE CASE ANALY SIS .ot 15
1 QUENY Database........ccoueeiieiie et 17

a. Query by SIngle Field......cccooiiiiiiiieeeceee e 17

b. Query by Multiple Fields.........coiiiriniiiiceeeec e 18

C. Create a REPOIT.......coociiiiie e e 18

d. HFEACSME SUMMAY ..o 19

e Create a Graph.......cccoeiiiereee e 19

2. Add t0 DAtabase........cccceviririririeiee e 20

a. Add @amMISNAP.....cciiiciee e 20

b. Yo [0 [= Tox (o S 21

3. Edit Recordsin Database..........cocevereriierienene s 21

a. Lo TS =T o RSP 22

b. [T [A = ot (o] T 23

4, ChaNge SENVET ... 23

5. Replacethe Database..........cccccvveeiieiie e 24

a. Replacethe Database VIa FTP........cccocoiiiniiin e, 25

b. Replacethe Database Via DisK..........coccvereririeenienenenc e 25

C. CLASS-RESPONSIBILITY-COLLABORATION (CRC) CARDS......... 26
D. MICROSOFT ACCESS & DATABASE ENGINES........ccocoviinieniienenne 27
E. DATA ACCESS TECHNOLOGIES......ccooeeieeeereeeee e 28
1 OLE DBitee ettt 29

2 ADO .ottt bt re e 30

3 (@10] =] S 31

4 15 AN © SRS 31

5 [51 RSSO 31

6 S @]I 1Y S 32

V.

F. PROGRAMMING MICROSOFT ACCESSAND SQL SERVER........... 33
G. MICROSOFT DEVELOPMENT EFFORTSccootiiiieieeeiene e 35
1. ACCESS 2002 [REF. 16].....ecvirviriiriiriieieieesie et 35
2. Visual BasiC.NET [REf. 17]..cccccviiiiririiire e 36
3. S @ IS = TP 37
H. THE CONCEPTUAL MODEL ...coooviieeeeeeeee e 37
HFACS CONNECTIVITY COMPONENT DEVELOPMENTccccovoiiiriniinins 41
A. OVERVIEW ..ottt sttt st snenneens 41
B. SEQUENCE DIAGRAMS ..ottt 41
1. CRANQE SEIVEN ...t 42
2. Replacethe Database VIa FTPcccoccovievecceceesece e 42
3. Replace the Database vVia DiSK........ccccouveeieeiieneeseeie e 43
C. COLLABORATION DIAGRAMS. ..ottt 43
1 CRANQE SEIVEN ... 43
2. Replacethe Database VIA FTP ... 44
3. Replacethe Database Via DisSK.........cccooeiirininenineneeesese s 44
D. CLASSDIAGRAMS ... e 44
1 HFACS ConNection ClasS........ccceiiriiniereeeeesieeie e 45
2. HFEACS Main ClasS.....c.coooiiiiiieseeie et 46
3. UpdateController Class........ccovvereeieiieiece e 46
4, UpdateDisk ClasS.......ccccevieiieiieciere et 47
5. FTPUPAALE ClaSS.....c.coiiieeieeiesieiee et a7
6. YIS O = SRS 47
E. IDENTIFICATION OF SDM STAGES. ...t 48
F. IMPLEMENTATION - STAGE L ... 49
G. IMPLEMENTATION - STAGE 2 ... 55
H. IMPLEMENTATION - STAGE 3 ..o 58
l. SUMMARY ettt st sttt e e s et sbe b nrenns 61
HFACSBUSINESS COMPONENT DEVELOPMENTcccoveiieieiecesece e 63
A. OVERVIEW ..ottt sttt st 63
B ARCHITECTURE ..ottt s 63
C SEQUENCE DIAGRAMS ..ottt st 66
1. P20 (o o To: o SRS 67
2. W0 [Y S = o SO 68
3. LT =T o] o SRR 69
4, Edit aMishapcoooiiieee e 69
5. Edit @ FACIOr ..o 70
6. Get SUMMArY REPOI ... 71
1. Creat@ aREPOIT ..o 71
8. QUENY e an e s re e nne e 72
D. COLLABORATION DIAGRAMS. ...ttt s 72
1 X0 (o = To: (o SRR 73
2. Add MISNAPS ... 73
3. L =T o] o IS 74
4, Edit aMiShap oo s 74

5 Edit @ FACLOr ..o 74

6 Get SUMMArY REPOIT ... e 75

7 Creat@ aREPOIT ..o s 75

8. QUENY ettt b e e a e e b nre e nree e 76

E. CLASSDIAGRAMS ...ttt et s 76
1 MaiN MENU CIASS....cciiiiiieieeie et 78

2 Connection FUNCLIONS ClaSS.........coiiirinirenirereseeee e 78

3 Select Mishap Class.......ccccvieeiiicece e 79

4 Edit MiSNap ClaSS.......coiiiieriiireeieeeeeee e 79

5 Add MisShap ClasS......cccueieiieieciesieere e 79

6 EXpert Graph Class........ccccceeiviieiicie e 80

7 Actual Graph CIaSS.......ccceiiriiiieeree e 80

8 QUENY MENU ClaSS....c.coiiiiriirierieeieee e 81

0. SUMMANY ClASS...ccuiiieieicie et 81

10. EXPert QUErY CIaSS......coiiiiiriiiierieeie et 82

11, View MisShapS ClaSS......ccociiiriririeieeieresie e 82

12. = 0 T0 A O = SR 82

F. IDENTIFICATION OF SDM STAGES......ccoo it 83
G. IMPLEMENTATION - STAGE 1 ..o 83
H. IMPLEMENTATION - STAGE 2 ... 86
l. IMPLEMENTATION - STAGE 3 ..o 88
J. IMPLEMENTATION - STAGE 4 ... 90
K. IMPLEMENTATION - STAGE 5 ... 92
1. WINAOWS 98 TEIS.....cviiiiiiiriesiiriirie et 92

2. WINAOWS 2000 TESES. ..ccuveiueirieeierieesieesie et e e s sre s saeesee e 93

V. CONCLUSIONS AND RECOMMENDATIONS......ccoo it 95
A. CONCLUSIONS ...ttt et 95
B. RECOMMENDATIONS......coo ettt e 100
C. SUMMARY ettt sttt sse e e s e aessesbessesrennens 101
APPENDIX A. CRC CARDSDEVELOPED FOR HFASC-ME......ccccoovninininirenn 103
A. CONNECTION COMPONENT CRC CARDS......ccoootririrenenie e 103
B. BUSINESSLOGIC COMPONENTS CRC CARDS.......cccocevenrrirriennnn 105
APPENDIX B. CLASSDIAGRAMS ...ttt st s 111
A. FACSDLL CLASSDIAGRAM ..ociiiiieeere et 111
B. HFACSFTP.EXE CLASS DIAGRAMcooiiveiesese e 111
APPENDIX C. DESCRIPTION OF CLASSES.......cooeiirerereste st sae e 113
A. HFACS CONNECTION CLASS.......ooiieeniese et 113
1 ClassS DESCI IPLION.......eiieeeiiee ittt nnes 113

2. Data Member DeSCription........ccceeeeeeiererese e 113

3. A= 4 g oo I D T= S o | o) (o] o 1 114

B. ODBLOGON CLASSottt sttt sse st snesre s 115
1 ClasS DESCIIPLION.....c.ciieeierie ettt s 115

2. Data Member DeSCription........ccoceeeeenenerese e 115

3. Method Descrlptlon .. 116

UPDATECONTROLLER CLASS.......c.oooiies e 116

1 ClasS DESCI IPLION.....cc.ciiieierie et 116
2. Data Member DeSCription........ccoeeeeieienerese e 116
3. Method DESCIiPLION.......cciieeceere e 117
DISK UPDATE CLASS ...ttt s 117
1. Class DESCIIPLION.cueiuirierieriieee et 117
2. DataMember DesCription........cccucceieereeieeseerecce e 117
3. Method DESCIIPLION......c.eeiieciee e 117
FTPUPDATE CLASS. ..ottt st s sne e 118
1. ClassS DESCIIPLION......cceieeeee e eee e sreenne e 118
2. Data Member DeSCription........cccccceieeieeieesecce e 118
3. Method DESCriPLiON.......coiuiiiireereeie e e 118
YIS D O I 119
1 ClassS DESCIIPLION......ccceiieciecie et eee e nne e 120
2. DataMember DeSCription........cccueceieerenieeneereeee e 120
3. M ethod DESCIIPLION.....c.ceiiiiereisierieeeeee et 120
CALLBAGCK CLASS ...ttt sttt 122
1 ClassS DESCI IPLION.......eeieeciiee et cee et e nnes 122
2. Data Member DeSCription........ccoeeeeeerererese e 122
3. A= 4 gToTo I D= o | o) (o] o 1 123
INTFILE CLASS ...ttt st 123
1 ClasS DESCIIPLION.cc.ciiieierie ettt s 123
2. Data Member DesCription........cccceeeeeeiererese e 123
3. Method DESCIriPLION.......cciieeeeere e 123
HFEACSMAIN CLASS ...ttt e 124
1. Class DESCIIPLION.ccueiuirierierieeee et 124
2. DataMember DeSCription.......cccvcceieereeieeseere e 125
INIFILECONTROLLER CLASS.......oooieese et 127
1 Class DESCIIPLION.cueiuerieeiieiieieee et 127
2. DataMember DeSCription.......cccvcceieereeieeseere e 127
3. Method DESCriPLION.......ccoiiieeieeeee e 127
WAIT CLASS. ..ottt sttt nae st e ene e 128
1. Class DESCIIPLION.ccueiirierierieeeeee et 128
1 DataMember DeSCription........ccoccceveeieeieeseere e 128
2. Method DESCriPLiON.......coiiriireereeie e 128
WELCOME CLASS ...ttt st snenne e 128
1. Class DESCIIPLION......cceieerieeee e se e nne e 128
2. Data Member DesCription.........ccccieiiueeieeiieesee e esee e 129
3. M ethod DESCIIPLION.....c.ceiieeireiiterieeeee e 129
CONSTRUCTORS CLASS ...ttt 129
1 ClassS DESCIIPLION......cceiieciecie et 129
2. DataMember DeSCription.......cccueeieenenieeniere e 129
3. M ethod DESCIIPLION.....c.ceiiiiereisierieeeeie e 129
ERRORLOG CLASS ...ttt st s 130
1 ClasS DESCIIPLION.....c.ciieeierie ettt s 130

2. Data Member DeSCription........cccvcceveeieeceeseece e 130

3. Method DESCriPLiON.......coiuiiiireereeie e e 130

0. el I O = S O 0 O 130
1 ClassS DESCIIPLION......cceieeciecee e 131

2. DataMember DeSCription........cccueeieerenieeseereeee e 131

3. M ethod DESCIIPLION.....c.ceiiiiereisierieeeeee et 131

P. TIMER CLASS ... ottt 131
1 ClassS DESCI IPLION........eeiieeiee et nnes 131

2. Data Member DeSCription........ccoeeeeeerererese e 131

3. Method DESCIIPLION.......cciieieeeere et 131

Q. FTP CLASS ...t et nb et s sne e 132
1 ClasS DESCI IPLION.....c..ciieeieeie ettt s 132

2. DataMember DesCription........cccucceieereeieseere e e 132

3. M ethod DESCIIPLION.....c.coiiieriiricreree e e 134

F N o N1 1 G I P 137
APPENDIX E. DESCRIPTION OF BUSINESSLOGIC CLASSEScccccvvnvvienene. 139
A. INTFILE CLASS ..ottt e 139
1 ClassS DESCI IPLION.......eeieeciiee et cee et e nnes 139

2. DataMember DEeSCription........ccereeieeierierese st 139

3. A= 4 gToTo I D= o | o) (o] o 1 139

B. GLOBALDECLARATIONS CLASS ...t 140
1 ClasS DESCIIPLION.cc.ciiieierie ettt s 140

2. Data Member DeSCription........coceeeeiererereseseseseeeesee e 140

3. Method DESCIriPLION.......cciieeeeere e 140

C. DETERMINEOSDECLARES CLASS......ooo et 141
1. Class DESCIIPLION.ccueiuirierierieeee et 141

2. DataMember DeSCription.......cccvcceieereeieeseere e 141

3. Method DESCIIPLION......c.eeiieciiecee e 142

D. FORMWINDOW CLASS......ccotitceeeeeeeesiese et sne s 143
1. Class DESCIIPLION......cceieeieeeseese e eee e nne e 143

2. Data Member DeSCription........ccccceieeieeceeseece e 143

3. Method DESCriPLiON.......coiiriireereeie e 144

E. SIZING FUNCTION CLASS ...ttt nnea 145
1 Class DESCIIPLION......ccceieeciece e 145

2. DataMember DeSCription........cccueeieerenieenieie e 145

3. M ethod DESCIIPLION.....c.eoiiieriirterieeeee e 145

F. SELECT MISHAP CLASS ...ttt 146
1 ClassS DESCI IPLION.......eiieeeiiee ittt nnes 146

2. Data Member DeSCription........ccceeeeeeiererese e 147

3. A= 4 g oo I D T= S o | o) (o] o 1 147

G. SUB SELECT MISHAP CLASS ...ttt 147
1 ClasS DESCIIPLION.....c.ciieeierie ettt s 148

2. Data Member DeSCription........ccoceeeeenenerese e 148

3. Method DESCriPLION.......cccieeceece e 148

H. EDIT MISHAP CLASS. ... oottt 148

1 Class DESCIIPLION......cceiieciecee et 149

2 DataMember DeSCription........cccueeieerenieeseereeee e 149
3. M ethod DESCIIPLION.....cceiiieiriereereeeeie e 149
MISHAP DESCRIPTION CLASS.......ooiteese e 150
1 (O TSS] B L= o T o] A 1o o ISR 150
2. Data Member DeSCription........ccoceeeeiererereneseseeeeee e 150
3. A= 4 g oo I D= o | o) (o] o 1 150
FACTORS CLASS.....c oottt 151
1 Class DESCIIPLION.ccuiiierieeieeieee et 151
2. DataMember DeSCription.......cccvcceieereeieeseere e 151
3. Method DESCriPLiON.......ccoieieeieece e 151
ADD MISHAP CLASS.....o ettt 152
1. ClassS DESCIIPLION.ccueiierierieriieee et 152
2. Data Member DesCription.......cccvcceveeveeiieseere e 152
3. Method DESCriPLiON.......coiuiiiireereeie e e 152
CODE MAINTENANCE CLASS ..ot nneas 154
1. Class DESCIIPLION......ccviiecece et se e nne e 155
2. Data Member DesCription.........ccccieiiueeieeiie e e esee e 155
3. M ethod DESCIIPLION.....c.ceiiiitiieirierieeeee e 155
CLOSE COMMAND CLASS ...ttt 155
1 Class DESCIIPLION.......ceiieciecee e 155
2. DataMember DeSCription........cccueeieerenieeseere e 155
3. Method DESCIiPLION.c.eeiirieieerierieeeee e 155
CONNECTION FUNCTIONS CLASS.....ci ottt 156
1 ClasS DESCI IPLION.....cc.ciieeierie ettt s 156
2. Data Member DeSCription........ccoceeeeeererenesesieseeeeee e 156
3. A= 4 g oo I D= o | o) (o] o 1 156
PLEASE WAIT CLASS ...ttt 158
1 Class DESCIIPLION.cueiuerieeiieiieieee et 158
2. DataMember DeSCription.......cccvcceieereeieeseere e 158
3. Method DESCriPLION.......ccoiiieeieeeee e 158
MAIN MENU CLASS ...ttt 159
1. Class DESCIIPLION.ccueiirierierieeeeee et 159
2. DataMember DeSCription........ccoccceveeieeieeseere e 159
3. Method DESCriPLiON.......coiiriireereeie e 159
ACTUAL GRAPH CLASS ...ttt 161
1. Class DESCIIPLION......cceieerieeee e se e nne e 161
2. Data Member DesCription.........ccccieiiueeieeiieesee e esee e 161
3. M ethod DESCIIPLION.....c.ceiieeireiiterieeeee e 162
EXPERT GRAPH CLASS.ot 163
1 ClassS DESCIIPLION........ceiieciecee et 164
2. DataMember DeSCription.......cccueeieenenieeniere e 164
3. M ethod DESCIIPLION.....c.ceiiiiereisierieeeeie e 164
SUMMARY CLASS ...ttt sttt st srenne s 165
1 ClasS DESCIIPLION.....c.ciieeierie ettt s 165

2. Data Member DeSCription........cccvcceveeieeieesecce e 166

3. Method DESCriPLiON.......coiuiiiireereeie e e 166

T. VIEW MISHAPS CLASS ...ttt s 168

1 ClassS DESCIIPLION......cceieeciecee e 168

2. Data Member DeSCription........cccceeieerenieeneeiesee e 168

3. M ethod DESCIIPLION.....c.ceiiiiereisierieeeeee et 168

u. EXPERT QUERY CLASS.o 169

1 ClassS DESCI IPLION........eeiieeiee et nnes 169

2. Data Member DeSCription........ccoeeeeeerererese e 170

3. A= 4 g oo I D= o | o) (o] o 1 170

V. QUERY MENU CLASS ...ttt nneas 171

1 ClasS DESCI IPLION.....c..ciieeieeie ettt s 172

2. Data Member DeSCription........ccoeeeeerereresesieseseeee e 172

3. Method DESCIiPLION.......ccceeieeeee e 172

W. REPORT CLASS. ...ttt st 173

1. Class DESCIIPLION.ccueiuirierierieeee et 173

2. DataMember DeSCription.......cccvcceieereeieeseere e 173

3. Method DESCIIPLION......c.eiiiecie e 173

APPENDIX F. BUSINESS LOGIC COMPONENT CODE.......ccoceveieiiererenese e 175
APPENDIX G. CONNECTION COMPONENToctiiiiireresiereses e 269
APPENDIX H. CLIPBOARD UTILITY ittt s 313
APPENDIX |. FTP SERVER ...t 315
APPENDIX J. INSTALL CD CODEccos ittt sttt 323
APPENDIX K. INVESTIGATION MODULEccoiiiriresereresee e 327
APPENDIX L. MODIFIED VB SETUPL.....coooiiiiieieerese et 363
APPENDIX M. STORED PROCEDURES.........cccoeieeiresese e 367
LIST OF REFERENCES ..ottt sttt st nne s 405
INITIAL DISTRIBUTION LIST .ottt s 409

Xiii

THISPAGE INTENTIONALLY LEFT BLANK

Xiv

Figure 1.1a
Figure 1.1b.
Figure 1.1c.
Figure 1.1d.
Figure 1.2.
Figure 1.3.
Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 2.7.
Figure 2.8.
Figure 2.9.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 3.10.
Figure 3.11.
Figure 3.12.
Figure 3.13.
Figure 3.14.
Figure 3.15.
Figure4.1.
Figure 4.2.
Figure 4.3.
Figure4.4.
Figure 4.5.
Figure 4.6.
Figure4.7.
Figure 4.8.
Figure 4.9.
Figure 4.10.
Figure4.11.

LIST OF FIGURES

Management ConditionS CategOrY.cccceeeeriererereserieseeeeeeee e 2
Working ConditionS CalegOry.cceieeieeeesieiieiieseeseeeeseesseseesre e seesseeeas 3
Maintainer Conditions CategOrY.ccvuviiueeieeiiriesie et 3
MaintaiNer ACtS CalEJOMES.ceruiirerierierieieiee et see e 4
Example HFACS SUMIMAY.ccoveieiierie et eee et 9
Example HFACS RepOrt OULPUL.c.eeveeeiiieiiecieesee e see e 10
HFACS-ME Use CaseS (1% LEVE. w.ouvueeeeeeeeeeeeveeeeee et teesesseseessese e 16
Query Database USE CaSE.ccceveririeririeie ettt 17
Add t0 Database USE CaSE.covveireieiiniesesee et 20
Edit aRecord in Dataase USe Case.ccovveeineenieniee e 21
Replacethe Database USE CaSse.coevereeiieiieresie e 24
OLE DB ATICHITECIUME.veveieiesiesiesieeee et sttt s 30
Conceptual Model for the Connection Component.ccccceeveevceeveeccveenen. 38
Conceptual Modd for the Business -Logic COMPONENt.ccevereereereereennes 39
Conceptual Architecture at the End of Requirements AnalysiS.........cccccvveuene 40
Change Server Sequence DIiagram.cccccveveeiieeiie e e 42
Replace the Database via FTP Sequence Diagram.ccoceceeeenenenenenennens 42
Replace the Database via Disk Sequence Diagram.ccoceeeeveenenenenenennens 43
Change Server Collaboration Diagram.ccceceeeeveiieeseeiesiee e see s 43
Replace the Database via FTP Collaboration Diagram.c.ccceeeeeveenennnne 44
Replace the Database via FTP Collaboration Diagram.ccccceceveveienennene 44
INterim Class DIagram.cceccueveeieeie e 45
Class Diagram for HFACS CONNECLION.ccccecveeiieeiiieiie et 46
HFACS_Main Class DIiagram.ccccoeeererierienesie s 46
Class Diagram for UpdateController Class..........cccovevereeevvenesieese e e 46
Class Diagram for UpdateDisk Class.ccccevviieiiiiiiieiie e 47
Class Diagram for FTPUpPdate CIass.ccooeiieierienereneseeeeee e 47
Class Diagram for MSDE ClIESS.ccoovriririeieieniesie et 48
OLE DB AIChITECIUIE.veveiisiesiesiesiee ettt s 55
File INStall LOCALIONS.cceeiiiieieeie ettt 58
Add Factor Sequence DIagraim.ccoveerererierienie e 67
Add Mishap Sequence Diagram.ccccceveeieieereeie e 68
Graph SequenCe DIagram.cceceeeieeiie e 69
Edit a Mishap Sequence DIiagraim.c.cceceeieerererereneseseseeee e 69
Edit a Factor Sequence Diagram.cccoveveeeeneenece e e 70
Summary Report Sequence Diagram.cceevueeieeiiecnee e 71
Create a Report Sequence DIiagram.coeeeeeeierenie e 71
Query Sequence DIagraim.ccoeeereririeese et 72
Add Factors Collaboration Diagram.cccceveeveeieseeseciee e 73
Add Mishaps Collaboration Diagram.cccceeererieneenenee e 73
Graph Collaboration Diagraim.ccceeeeierierierenesiese e 74

XV

Figure 4.12.
Figure 4.13.
Figure 4.14.
Figure 4.15.
Figure 4.16.
Figure4.17.
Figure 4.18.
Figure 4.19.
Figure 4.20.
Figure 4.21.
Figure 4.22.
Figure 4.23.
Figure 4.24.
Figure 4.25.
Figure 4.26.
Figure 4.27.
Figure 4.28.
Figure 4.29.
Figure 4.30.
Figure 4.31.
Figure 4.32.
Figure C.1.

Figure C.2.

Figure C.3.

Figure C.4.

Figure C.5.

Figure C.6.

Figure C.7.

Figure C.8.

Figure C.9.

Figure C.10.
Figure C.11.
Figure C.12.
Figure C.13.
Figure C.14.
Figure C.15.
Figure C.16.
Figure C.17.

Figure E.1.
Figure E.2.
Figure E.3.
Figure E.4.
Figure E.5.
Figure E.6.
Figure E.7.

Edit a Mishap Collaboration Diagram.ccccceveeieieenecie e 74
Edit a Factor Collaboration Diagram.cceceeeereriereenene e 74
Get Summary Report Collaboration Diagram.c.ceeeeereeeenenenesiesieseennes 75
Create a Report Collaboration Diagram.ccccceeeeveieeseeiesieeseeeseeseenens 75
Query Collaboration DIiagram.c.cceieeieneeneniee e 76
Intermediate Class Diagram..........ccoeveeirieierese e 77
Main Menu Class DIagram.c.ccceeveeieeieereeeseese e see e eeesee e seesseessesneens 78
Connection Functions Class Diagram..........cccceeceeieeiieenee s 78
Class Diagram for Select Mishap ClIasSs. ..o 79
Edit Mishap Class DIiagram.cccccveeeevieresiesiesieeeeseese e seesse e sreesseenens 79
Add Mishap Class DIiagram.cccceeceeeeieeie e e sre e 79
Expert Graph Class DIiagram.cccceeeveerieniiseese e 80
Actual Graph Class Diagram.ccceeererererieeiesiese e 80
Query Menu Class DIiagram.ccceeeereeieeseeneeieeseese e seesae e sree e eessseees 81
SUMMary Class DIagram.cccoceecereerenieenee e siee e s sae e eas 81
Expert Query Class DIiagraim.ccoeeeeereriienienesie s 82
View Mishaps Class Diagram.ccccceeeereeieseeseeieeseese e sreesee e esee e 82
Report Class DIiagram.cceciieiieeiie ettt 82
HFACS Tables- 3rd Normal FOrm.ccooeeiiiieiiee e 85
HFACS Tables - Final SOIULION.coeiiiiiiiieire e 86
Example Crosstald QUENY.c..ooeeoeee ettt 91
Class Diagam for HFACS CONNECLION.covveeiinienieeie e 113
Class Diagram for ODBLOGON.cccuvirieririeiieniesie st sreseens 115
Class Diagram for UpdateController Class..........ccocevveveieeieeiecee e 116
Class Diagram for Disk Update CIass.ccveeienieninienee e 117
Class Diagram for FTPUpPdate CIasS.cceoeieiirenieneneseeeeeeseese e 118
Class Diagram for MSDE CIaSS.cccccveieiieerieie e seesie e 119
Class Diagram for Callback Class.ccccccviiieiiiciiece e 122
INIFiIlE Class DIagraim.ccereririeieieeeie et 123
HFACSMaIN Class Diagram.cccccueveeiesieseeieseesieeee e e eessseessesessseees 124
INIFileController Class Diagram...........ccccceeieeeeieeiesee e cee e 127
Walt Class DIAQIaIM.cc.eeeeiieieeie ettt s sne e 128
Welcome Class DIagraim.cccooueiirierenenesieeesie s 128
Constructors Class DIaQram.ccveeeieeieiieeseesie e esie e sse e e nee e 129
ErrorLog Class DIagram.ccceeceriereeiieniesieeie e s 130
FTPCBK Class DIiagram.ccccceiemererieieieesie s 130
Timer Class DIagram.cccceeieeieciese e se e eneens 131
FTP Class DIagram.ccccciieiiie et se ettt st 132
Class Diagram for INIFIE Class. ... 139
Class Diagram for Global Declaration Class.cccccveveveeveesesceeseesee e 140
Class Diagram for DetermineOSDeclares Class..........ccccvveeveeveceeseesie e, 141
Class Diagram for FormWindow CIass.c.cevereeninnnninneesieseesee e 143
Class Diagram for Sizing FUNCtioN ClaSs.ccoovvinivenenineeeese e 145
Class Diagram for Select Mishap Class.ccceevviienicvie e 146
Class Diagram for Sub Select Mishap CIass.........cccoveeveneenenneseeeee e 147

XVi

Figure E.8.
Figure E.O.

Figure E.10.
Figure E.11.
Figure E.12.
Figure E.13.
Figure E.14.
Figure E.15.
Figure E.16.
Figure E.17.
Figure E.18.
Figure E.19.
Figure E.20.
Figure E.21.
Figure E.22.
Figure E.23.

Edit Mishap Class DIiagram.ccccceveeieeieeseeie et 148

Mishap Description Class DIiagram.coceveeeeneeneniienee e 150
Factors Class Diagram.ccooeieienenineeeeeesee et 151
Add Mishap Class DIiagram.ccceceeveeiesieeseeieseesee e seese e s sse e sseees 152
Code Maintenance Class DIiagram.cocceeeereereneeneesie e 154
Close Command Class Diagram.ccoeeeeieiereneneseseseeeeee e 155
Connection Functions Class Diagram..........cccceeveeeneeneseeseese e 156
Please Wait Class Diagram.cccecveiieiiie et esree e s 158
Main Menu Class DIagram.ccoeeerereeeeieerese e 159
Actual Graph Class DIiagram.cccceveecenieeseeieseese e seesee e e eee e 161
Expert Graph Class DIiagram.ccccoeeeeeeeseeie st eee e see e 163
SUMMAry Class DIagram.cccceeierierieieeie e e see e 165
View Mishaps Class DIiagram.ccccoerererieieenieniesie e s 168
Expert Query Class DIiagram.ccceveeieeieesieeie e eee e ste e e 169
Query Menu Class DIagram.coceeeereerieninneesie e siee e see e see s seeeseesneens 171
ReEPOrt Class DIBgIaM.coeiiiiiiririeeeee e 173

XVii

THISPAGE INTENTIONALLY LEFT BLANK

XViii

ACKNOWLEDGMENTS

We would like to acknowledge and thank the following people for their part in the
successful completion of this thesis:

Our advisors, Dr. Thomas Wu and LtCdr Chris Eagle for providing much needed
advice, support, expertise, and patience.

Capt John K. Schmidt and Capt(R) George Zolla for their guidance and direction
of the HFACS effort.

Brian Steckler and his team of programmers at of Universal Internet for ther
assistance on various aspects of the design.

Tabitha Barham, James Carr, and Keith Wong of Microsoft Corporation for their
assistance in troubleshooting issues related to the SQLDMO object model and with the
Microsoft Office Developer version of the Package & Deployment program.

CPT Dwight Hunt of TRAC Monterey, for his support and provision of licensed
devel opment tools.

Cdr Anthony Boex and CPT Doug Nelson for their assistance with the actual code
effort.

Mr. Steve Dassin, inventor of the Replacement for Access Crosstab package of
tools. This project would have no graphs or reports without his assistance.

Mr. Andy Irvine of Explain Limited, who provided greatly needed assistance
troubleshooting advanced SQL queries.

Our wives, Kelley Flanders and MiKyong Tufts for their unwavering support.

Xix

THISPAGE INTENTIONALLY LEFT BLANK

XX

EXECUTIVE SUMMARY

The purpose of this research is to technically evaluate, refine, and expand two
existing aircraft safety management information systems (one military and one civilian).
The systems are used in the data collection, organization, query, analysis, and reporting
of maintenance errors that contribute to Aviation mishaps, equipment damage, and
personnel injury. Both programs implement the Human Factors Analysis and
Classification System (HFACS) taxonomy model developed by the Naval Safety Center
(NSC) to capture aircrew errors in Naval Aviation mishaps. The goa of this taxonomy is
to identify areas for potential intervention by fully describing factors that are precursors
to aircraft accidents.

Requirements outlined by Dr. John K. Schmidt of the Naval Safety Center, in
conjunction with funding by the National Aeronautics & Space Administration, require
that the system utilize a Microsoft Access based implementation. This research focuses
on meticulous software engineering to investigate the feasibility of adapting the current
"structured” systems to Microsoft-based object oriented architectures ensuring future

scalability and increased potential for code-reuse.

XXi

THISPAGE INTENTIONALLY LEFT BLANK

XXii

l. INTRODUCTION

A. BACKGROUND

The Human Factors Analysis Classification System - Maintenance Extension
(HFACS-ME) is a tool used in the data collection, organization, query, anaysis, and
reporting of maintenance errors that contribute to Aviation mishaps, equipment damage,
and personnel injury. In order to better relate the scope and requirements of the software
reengineering and development efforts outlined in this thesis, a general overview of the

Human Factors Analysis model isin order.

Aircraft accidents occur due to many contributing factors. No matter how
obvious the cause of an accident may appear, an investigation is always performed after
the fact to ensure that all underlying causes for the mishep are captured. Great emphasis
is placed on the word all. A failure to fully describe the causes of a mishap can result in
oversights that alow future mishaps of the same type to occur. Research related to
accident investigations has demonstrated that in seventy to eighty percent of civil and
military aircraft accidents, the underlying causes were human errors [Ref. 25].
Furthermore, close to ninety-two percent of investigations into Naval Reserve Aviation

mishaps cited maintenance personnel as the primary causal factor for the mishap [Ref. 1].

The Naval Safety Center (NSC) recognized the need to develop a formal process
for categorizing the causes of aviation mishaps in an attempt to prevent them from
recurring. Inresponse, it developed a Human Factors Analysis and Classification System
(HFACYS) taxonomy. The HFACS model incorporates Reason's model of latent and
active failures [Ref. 27] as well as Heinrich's "Domino Theory" [Ref. 28] and Edward's
"SHEL model" [Ref. 29]. In general, the model facilitates classification of errors and
violations associated with a mishap into several broad categories. Once categorized, the
mishap data is much easier to manipulate and analyze, enhancing problem solving
techniques. Examples of categoriesin the original model include:

Supervisory conditions. Inadequate supervision, planning inappropriate
tasks, failure to correct known problems, and supervisory violations,

Operator conditions. Adverse physica and mental states, which include
situational awareness, mental fatigue, over confidence, complacency,
visual illusions, hypoxia, poor communication, not assertive, intoxication,
mental lapses, and illness.

Workplace conditions. Confining space, damaged equipment, using
uncertified equipment, inadequate lighting, adverse weather, and
inaccessible workspace.

In 1995, the NSC officially adopted the HFACS model as the standard for
analyzing human errors in Naval Aviation mishaps and targeting appropriate prevention.
Although there was some reduction in the Naval aviation mishap rate with the
implementation of HFACS, its restricted focus on only aircrew errors limited its utility.
A 1997 study by Schmidt, J., Schmorrow, D., & Hardee, M. noted that HFACS could be
extended to cover maintenance errors [Ref. 26]. As aresult of this study, a Maintenance
Extension (ME) of the HFACS taxonomy was adapted to classify causal factors that
contributed to maintenance mishaps. The additions to the model focused on detailing
how latent factors that contribute to a maintainer’s performance could possibly lead to an
active failure or ultimately an unsafe maintainer act. The new model (depicted in Figures
1-1ab,c,d) consists of four major categories each broken down into three levels of inter-
related factors. This new taxonomy can truly be used to define all possible mishap
related factors.

=] Organizational

« Inappropriate Processes
« Inadequate Design
M anagement * Inadequate Documentation

Conditions « Inadequate Resources

=1 Supervisory

« Inadequate Supervision
¢ Uncorrected Problem

« Inappropriate Operations
« Supervisory Misconduct

Figurel.la. Management Conditions Category.

Environment

« Unsafe Environmental Hazards
« Unsafe Weather / Exposure
« Inadequate Lighting / Light

Working
Conditions

Equipment

« Unavailable/ Inappropriate
« Damaged /Unserviced
« Dated / Uncertified

Workspace

 Inaccessible
« Obstructed
« Confining

Figure1.1b. Working Conditions Category.

Readiness

«Infringement
«Certification / Qualification
*Training / Preparation

Maintainer
Conditions

Medical

Figure 1.1c.

e Limitation
¢ Adverse Physicd State
¢ Adverse Mental State

Crew
Coordination

* Inadequate Assertiveness
« Inadequate Communication
* Inadequate Adaptability/Flexibility

Maintainer Conditions Category.

™ Error

« Knowledge / Rule-Based

* Attention/ Memory

Maintainer « Judgment / Decision Making
Acts ™ - Skill / Technique-Based

=1 Violation

« Infraction
* Routine
 Exceptiona
* Hagrant

Figure1.1d. Maintainer Acts Categories.

A 1998 review of 470 Naval Aviation mishaps determined that the new HFACS-
ME taxonomy was indeed an effective classification system for determining trends in
aviation mishaps [Ref. 33]. Building on Schmorrow's research, Fry developed the first
partially automated HFACS-ME modd implementation [Ref. 34]. Dubbed the
"Maintenance Error Information Management System” (MEIMS), the new tool
effectively could handle more data than its paper-based predecessor -- refining the
HFACS-ME model and making it more efficient and effective. Over time, more
automated improvements were desired. Fry’s rudimentary MIEMS spreadsheet- based
tool was further refined by Wood and developed into a working prototype stand-alone
application [Ref. 2]. This new Microsoft Access 97 based program was distributed for
Fleet testing and evaluation. A follow-on usability study of the prototype determined that
it could be developed into an effective system, not only in determining trends but

providing information for mishap prevention efforts.

In the period between June 2000 and January 2001, the HFACS-ME Microsoft
Access 97 database underwent various modifications to enhance its capabilities and make
it compatible with Microsoft Access 2000. A civilian variant was developed using a
different set of database schema in order to investigate application of the HFACS-ME
model to the commercial aviation industry. In January 2001, Dr. John Schmidt
demonstrated this prototype civilian HFACS-ME system to representatives from NASA

and the FAA. As a result of this meeting, NASA provided funding to support the
4

development of entirely new prototypes for both the civilian and military versions of
HFACS-ME.

This thesis is part of the new HFACS-ME prototype development effort. There
are four separate groups working on different areas of the project:

Group 1- Responsible for this thesis, encompassing the software
engineering and implementation of desktop prototypes for both military
and civilian versions of HFACS-ME.

Group 2 - Responsible for web-enabling the database with support from an
external contractor.

Group 3 - Responsible for refinements in the existing military and civilian
versions of HFACS-ME and devel oping requirements for groups 1 and 2.
Also responsible for an independent usability study of our redesigned
HFACS programs.

Group 4 - Responsible for developing a distance learning interface for the
entire system.

B. AREA OF RESEARCH/SCOPE

A wel-designed HFACS-ME information management system capable of
weathering upgrades to platform applicatiors while providing scalability and opportunity
for code reuse will ensure the satisfaction of its users for many years. Providing a user-
friendly interface to the application will ensure standardization of data input and increase
the validity and reliability of the data for investigators and safety personnel. Access to
this data will allow maintainers and safety personnel to quickly identify potential hazards,
analyze trends and ultimately train personnel to avoid future occurrences, reducing

aircraft mishaps and potentially saving lives.

This thesis is part of ongoing effort to investigate the feasibility of the HFACS-
ME as a taxonomy framework for the investigation, collection, and analysis of
maintenance related mishap data with the use of the MEIMS. Our research will enable us
to further refine both versions of HFACS-ME in conjunction with the NASA
requirements and other groups working on their respective areas of the project. The
specific questions we will attempt to answer are:

How can a Microsoft Access based implementation provide multi- user
access to the same database in a client-server environment while ensuring
the ability to scale to alarge number (potentially thousands) of users?

5

How can the linguistic discontinuity associated with object-oriented
concepts and nonobject oriented, flat relational databases be overcome
when limited by requirements to use certain types of software
implementations (e.g. a Microsoft Access based solution)?

The current military and civilian systems provide similar functionality, but
use different database schema. How can a common interface be
developed for both types of data?

How should database schema be changed to provide the best performance,
scalability, and opportunity for code re-use?

In the past, Microsoft has deployed new versions of Microsoft Access and
Visual Basic that were not (fully) backwards compatible with previous
versions. This caused great discontent among users of applications
designed to run under the older versions of these programs. How canour
systems be designed to isolate them from problems associated with new
versons of Microsoft Access? Specifically, the pending release of
Microsoft Office XP, Microsoft Office 2002 and Microsoft Visual
Basic.NET?

What new features should be implemented to make the information
systems more user interactive and user friendly?

C. REQUIREMENTS

The purpose of this section is to identify and document requirements for the new
HFACS-ME prototype in a form that clearly communicates the intent of our sponsors.
We recognize the importance of correct and thorough requirements specification as one
of the most important parts of this design effort. The detailed specifications herein were
provided by Dr. John Schmidt of the Navy Aviation Safety Center. These requirements
were established to provide enough information regarding the system to allow us to begin
contemplating the conceptual model for the software engineering effort.

The primary goal of creating a desktop version of HFACS-ME is to provide a
capability for investigating aviation mishaps using an efficient automated tool from a
field location without network/Internet connectivity. The system should provide an
intuitive graphical user interface encompassing all the functionality of the current
HFACS system. In addition, it should be designed so as to provide the capability to scale
into an enterprise level networked & web-enabled application. It must be adequately
documented and provide maximum opportunity for code reuse. In order to facilitate
rapid application development methods the system must be implemented using Microsoft

6

Access 2000. It must be capable of running on al Intel X86 (or compatible) platforms
running a Microsoft Windows 95 or newer operating system. Finaly, to the maximum
extent possible, the system should be developed to insulate it from compatibility
problems associated with upgrades in operating systems, programming languages, and

versions of Access.

The HFACS-ME system must be compatible with many different types of
hardware ranging from notebook computers to large enterprise servers. Although the
system does not have to process data in real-time, it should provide an "adequate” level of
usability with the following minimum hardware specifications:

Computer CPU: Intel® or compatible Pentium 166 MHz or higher.
Memory (RAM): 32 MB minimum on all other operating systems
Hard Disk Space: 75 MB minimum, 150 MB typical

Monitor: 800x600 or higher resolution required

Pointing Device: Microsoft Mouse or compatible

CD-ROM Drive: Required

Internet Software: Microsoft Internet Explorer 5.0

Two versions of the program are required, one for civilian use and the second for
military use. Specific requirements for the civilian version are not well defined and are
expected to grow after initial release of the program. Care should be taken to provide as
much opportunity for code reuse in this area as possible. As a minimum, the following

system functions and attributes must be implemented in both versions of the program:

A Main Menu. The Main Menu must have the following user options.
Query
HFACS-ME Summary
Graphs
Reports
Add/Edit Mishap
Exit
Details of the "Query" Option The Query option will provide methods to search

and analyze the accident database. It must allow users to query the database based on
7

different kinds of criteria in order to locate instances of certain types of mishaps. For
each query result, the screen output should list all contributing factors associated with the
mishap. This includes a description of the factor and the associated first, second and
third level causa codes. There should be an option to display the HFAC-ME taxonomy
S0 that these causal codes can be better understood. The user should be able to view one
mishap at a time or display the total number of mishaps returned by the users query.
There must be an option to display an expanded description of the mishap. Finally, the
user must be able to query the database by selecting one or any combination of the
following mishap criteria

Aircraft Model

Aircraft Type

Organization

Location

Mishap Class

Mishap Type

Year

Details of the "HFACS-ME Summary" Option The program must offer an

option to tabulate summary statistics of HFACS data that provide the user with the
percentages of al HFACS-ME error categories within a group of selected accidents. This
will be a mathematically intensive operation. The selection categories should be
comprised of the same options as used by the Query option, aswell as, al three HFACS-
ME Error Category levels.

The screen output for this implementation should graphically display the HFACS-
ME factors structure. It should illustrate summary statistics for each category. At a
minimum the summary statistics should include number of factors and percentage of
mishaps that with factor. The "Level" categories must allow the user to search the
database for factors that only apply to that level. For example, the user should be able to
identify which accidents involved a Maintainer Act-ViolationInfraction or a

Management ConditionSupervisory-Supervisory Misconduct causal factor. This will

allow users to better identify contributing factors because the corresponding percentages

of the other Error Categories will also be visible on one screen.

All that should be required from the user is to select criteria from some type of list
or list-box to calculate the summary information. This screen must also display the total
number of mishaps included in the summary statistics based upon the users selection.

Figure 1.2 illustrates an example of the type of output this option should provide:

B Error
il 3L evel Factor:
- Knowledge / Rule Based # % |
* Attention/ Memory # 9 2nd Level Factor:
M aintainer * Judgment / Decision-Making# % j
[S ique- # %
Acts Skill / Technique-Based 0 15t Level Factor:
% j
| Aircraft Moddl:
=1 Violation .
%] J
" Aircraft Type:
* Infraction # o j
* Routine # %

» Exceptional # %
e Flagrant# %

Figure1l.2. Example HFACS Summary.

Details of the Graph option The graph option should alow users to select

various mishap data and dynamically create bar charts for analysis. The user should be
able to select any of the following categoriesto use as X or Y vauesin the bar chart:
Aircraft Model
Aircraft Type
Organization
Location
Mishap Class
Mishap Type
Year
Once a category is selected the user will then be able to select a value in that
category. For example, if the user selects Aircraft Model, they will be presented with all

9

the aircraft models within the database to choose from, 14, 18, H46 etc. After the
initial chart has been viewed, the user should have the option to go back and change

selected values or print the chart to a printer.

The Report Option This option should alow the user print summary reports

based upon the following criteria:

All mishaps

By aircraft model

By mishap class

By mishap type

By mishap class and type

By organization

By location

All mishaps chronologically

By 3rd level factor

By 2nd level factor

By 1st level factor

Reports should be categorized so as to print in the format of the HFACS-ME

taxonomy. Each report should display the total number of mishaps associated with the
users selection, the number of mishap factors for each HFACS-ME factor, and the
percentage of factor occurrences vs. total mishaps. Figure 1.3 illustrates an example of
the type of output this option should provide:

HFACS Summary Report
MishapsBy Carrier

AsOf: Monday, May 28, 2001 3:14:49 PM

1-Air FloridaAirlines

Category Number % of Total

Unsafe Supervisory Conditions(USC) 1 100%

100% Organization
0% Hazar dous Unsafe Oper ations
0% Inadequate Documentation

100% Inadequate Design
100% Inadequate Processes
0% Inadequate Resour ces
100% Supervisory

100% Inadequate Supervision

Figure1.3. Example HFACS Report Output.

B P O R P O O K

10

Details of the Add/Edit Mishap option This option should provide users the

ability to edit any mishap in the database as well as to add new mishaps and factors.
Access to the add edit feature must be controlled via a password mechanism. A wizard
should be implemented to ensure consistency of each new mishap and factor -- dl
mandatory data must be provided by the user and validated by program logic for each
new mishap and factor. The following data is mandatory for adding a new mishap:

Aircraft Model
Aircraft Type
Service/Organization
Location
Mishap Class
Mishap Type
Mishap Date
Description of Mishap
The following data is mandatory for adding a new factor:
3rd Level Code
Factor Description
The user must be able to enter severa factors per mishap. The user interface
should make use of drop-down boxes to make input as simple as possible.
D. METHODOLOGY
The methodology used in this thesis research consisted of four phases. 1.
Requirements analysis, 2. System Foundation Development/Implementation, 3. HFACS-
ME Development/Implementation, and 1V) Test and Analysis.
1. Phase | - Requirements Analysis
This phase consisted of initial analysis of the requirements for both systems.
"Use cases' were developed to model domain processes and foster a better understanding
of the system foundation requirements. A conceptual model was created to decompose
the problem domain in terms of identification of the concepts, attributes, and general
associations in the domain. Opportunities for code reuse, common database interface,

common schema, and improved performance were investigated. A comparison of

11

Microsoft Access compatible database engines in terms of performance, upgradeability,
and scalability was conducted. Finally, an investigation of Microsoft development efforts
in the areas of Microsoft Office, Microsoft Visual Basic (VB), and Microsoft Visual Basic
for Applications (VBA) was conducted to determine best practices for ensuring future
compatibility.

2. Phase |l - System Foundation Development/I mplementation

In this phase, the development effort focused on client/server foundation analysis
and implementation. We developed sequence & collaboration diagrams for the typical
course of events of each use case related to the client/server foundation. These diagrams
were used to illustrate alocations of responsibilities to objects in the system
demonstrating how they interact via messages. Next we created Class diagrams based
upon these objects (how they connect) and the methods that each software class defined.
The end result of this phase was a functioning client / server architecture environment
upon which the HFACS-ME program implementation was devel oped.

3. Phaselll - HFACS-ME Development/I mplementation

In this phase we utilized the same methods as Phase Il to develop working
prototypes for the HFACS-ME miilitary and civilian programs. The end product included
installation software, an HTML help system, and system documentation.

4, PhaselV - Test and Analysis

This final phase was a wap up of the research effort. During it we tested our
implementation on severa different platforms, corrected several minor program
deficiencies, and investigated opportunities for future program enhancement.
E. ASSUMPTIONS

Throughout this thesis, We assumed that the reader is familiar with object
oriented programming techniques, has a general understanding of the HFACS-ME model,
and is familiar with basic Navy and DoD technical terminology.
F. DEFINITIONS

For the purpose of this thesis, the terms Human Factors Analysis Classification
System (HFACS) and Human Factors Analysis Classification System - Maintenance
Extenson (HFACS-ME) will be used synonymoudy. The ME suffix more accurately

12

describes the "up to date" implementation of the model which encompasses maintenance

related factors. In practice, however, the system is still referred to as HFACS.

All copyrighted material mentioned is © of their respective owners. This thesis

does not make any attempt to recommend any of the commercia products mentioned or
used in the development of HFACS-ME.
G. ORGANIZATION

This thesis is divided into five chapters. Chapter | presented the problem,
background, stated the area of research, and described the methodology, and associated
research questions. Chapter Il identifies Requirements Analysis through the use of use
cases and development of a conceptual model. Chapter 111 details the development of the
client - server foundation of the program. Chapter |V provides similar details for the
development of the actual HFACS-ME program. Chapter V provides a summary of
research efforts, prototype testing results, conclusions, and recommendations for future
enhancements.

13

THISPAGE INTENTIONALLY LEFT BLANK

14

. REQUIREMENTSANALYSS

A. OVERVIEW

In this chapter we describe the process used to define functional capabilities,
performance & design constraints, system interfaces, and phase allocation of work to the
HFACS system. This analysis provided a representation of information and function that
was eventually translated into data, architectural, and procedural design. Throughout this
requirements analysis process we focused on discovery, refinement, modeling, and
specification of the "big picture’ HFACS system. We relied heavily on models created
using the Unified Modeling Language (UML) and use cases/use case diagrams for
gathering operational behavior and determining data content.

The UML is the successor to the various object oriented development tools
developed during the 1980's and early 1990's primarily combining the methods of three
key pioneers, Booch, Rumbaugh, and Jacobson [Ref. 3]. The UML is referred to as a
modeling language rather than a "method" language as it is primarily concerned with
using graphical methods over process language to express system design. Much of our
analysis in this chapter is graphica in nature and requires knowledge of the UML to
appreciate fully.

In addition to using the UML to identify the system features, we investigated
several other pertinent areas of the design using more traditional means. Types of data
access technologies, compatible programming languages, opportunities for code reuse,
and ways to improve performance to name afew. To this end, a comparison of Microsoft
Access compatible database engines in terms of performance, upgradeability, and
scalability was conducted. We also investigated current Microsoft development efforts to
determine best practices for ensuring future HFACS compatibility. In the end, these
steps alowed us to create the overarching conceptual model for our system, alocating
work to the remaining design phases as appropriate.

B. USE CASE ANALYSIS

In order to better understand requirements, domain processes for the HFACS were

expressed using use cases and use case diagrams. A use case represents a typical
15

interaction between a user and the computer system. Use cases are used to capture some
user visible function as each one is manifested as some discrete goal for the user. The
use cases presented here were created using the most basic of investigation tools such as
observation and discussion with people familiar with the current HFACS system. We
were not concerned with intricate details of the system when we created these use cases,
merely a basic overview of each component/function. Our goal was to learn about how
the user really intended to use the system. Descriptions of the various Use Cases are as

follows.

HFACS-ME Use Case (Level 1)

Query Database

% / Add to Database

1

gl
Operator __|
Edit Records
\ in DB
Manager

Change Server

i

Replace Database

Figure2.1. HFACS-ME Use Cases (1% Leve).

16

1 Query Database

Operator\

Query Database

Query by Single
Field
E— Query by
Multiple Field

Create a
Graph

Figure2.2. Query Database Use Case.

Use Case: Query Database

Actors: Operator

Purpose: To query the HFACS-ME database for information, graphs, and reports

Overview: The operator needsto be able to query the database for specific information.
The operator has the ability to query on asingle or multiple fields, obtain
summary information, create graphs, and create reports. The operator can
perform these functions after the SQL server is started.

Type: Primary and essential

a. Query by Single Field

Use Case: Query by Single Field

Actors: Operator

Purpose: To query the HFACS-ME database on singlefield

Overview: The operator has the ability to query database on any field of the database that
pertains to aircraft mishaps. These queries are pre-built. The HFACSME
system will retrieve any dataitem that meets the query conditions.

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the operator selecting
to query the database.

2. Presents the operator with general areas to focus
the query. For example, aircraft type, aircraft
model, location of the mishaps, etc.

3. Operator selects one of the general areas to focus
the query

4. Present the operator with a choices to
specifically focus the query. For example, al
mishaps that involved F14s.

5. Operator selects the specific field to perform the
guery operation

6. Forms the query and executes the query through
the SQL server.

7. Displays the resultsto the operator

17

b.

Query by Multiple Fields

Use Case: Query by Multiple Fields

Actors: Operator

Pur pose: To query the HFACS-M E database on multiplefields

Overview: The operator has the ability to query database on multiple fields of the database
that pertains to aircraft mishaps. These queries are pre-built. The HFACSME
system will retrieve any dataitem that meets the query conditions.

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the operator selecting | 2. Presents the operator with general areas to focus

to query the database.

the query. For example, aircraft type, aircraft
model, location of the mishaps, etc.

3. Operator selects one or more of the general areas | 4. Present the operator with choices to specifically
to focusthe query

focus the query for each general area. For example,
all mishaps that involved F14s at Pensacola, FL ..

5. Operator selects the specific field of each general
area chosen to perform the query operation

6. Forms the query and executes the query through
the SQL server.

7. Displaystheresultsto the operator

C. Create a Report

Use Case: Create a Report

Actors: Operator

Purpose: To present the report of aircraft mishaps based on the criteria selected by the
operator

Overview: The operator has the ability to search the database to create reports on aircraft
mishaps. These reports will be created based on the specification chosen by
the operator. The HFACS-ME system will display the report based on these
specifications.

Type: Primary

Typical Course of Action

Actor Actions System Response
1. This use case begins with the operator selecting | 2. Presents the operator with choices for the type of
to generate areport. report to be created.

3. Operator selects one of the report formats (all
mishaps, sort by aircraft type, sort by organization,

sort by location, or sort in chronological order)

4. Query the database based upon the operator
selection to tabulate a report. Display the result to
the user.

18

d. HFACS-ME Summary

Use Case: HFACS-ME Summary

Actors: Operator

Purpose: To display the contributing factors to mishaps and the amount the factors in
each level contribute to the mishap.

Overview: The operator has the ability to search the database to create summary
information of contributing factors on aircraft mishaps. These summary data
will be created based on the specification chosen by the operator. The
HFACS-ME system will display the information based on these specifications.
All possible factors will be displayed with the percentage of that factor being
involved in the accidents.

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the operator selecting
to create a summary report of aircraft mishaps.

2. Presents the operator with summary data
considering all possible areas (aircraft type, aircraft
model, mishap class, etc.).

3. If the operator desires summary data on certain
types of mishaps, the operator can select the specific
types aircraft mishaps to include in the summary
data.

4. Query the database to include only those types of
mishaps desired by the operator and present a
summary report

e Create a Graph

Use Case: Createagraph

Actors: Operator

Pur pose: To display the graphical chart of aircraft mishaps based on the criteria selected
by the operator

Overview: The operator has the ability to search the database to create graphical charts on
aircraft mishaps. These charts will be created based on the specification
chosen by the operator. The HFACSME system will display the chart based
on these specifications.

Type: Non-Critical

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the operator selecting
to create a graph of aircraft mishaps.

2. Presents the operator with choices of x and y-
axis components. These components are general in
nature such as aircraft model, aircraft type, year of
mishap, etc.

3. Operator selects one of the general components
for the x and y-axis of the graph

4. Present the operator with choices of specific data
to be included in the graph. These are specific
items such as F14, F18, year 1996, etc.

5. Operator selects the specific item(s) to be
included in the graph for both x and y-axis.

6. Query the database to obtain data and display the
result in agraphic nature.

19

2. Add to Database
Add to Database
I gy S

Operator
Figure2.3. Add to Database Use Case.

Use Case: Add to Database

Actors: Operator

Purpose: To add mishap information at the start of the investigation of the accident and
to add factors that contributed to the mishap

Overview: The operator has the ability to input into the database data that pertains to the
mishap. The operator also has the ability to input contributing factors that led
to the mishap. The operator can perform these functions after the SQL server
is started.

Type: Primary and essential

Add a mishap

Use Case: Add aMishap

Actors: Operator

Purpose: To add mishap datainto the database

Overview: As new aircraft mishaps occur, the operator has the ability to add mishap data
into the database. The data includes date of the mishap, description, cost, type
of aircraft, model of the aircraft, location, category of the mishap, and
organization involved.

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the occurrence of a
new aircraft mishap. Operator selects to add a new
mishap into the database.

2. Requests all pertinent information for this
mishap. The information required includes: data of
mishap, aircraft type, mishap type, mishap class,
organization, category, location, whether any
crewmen were injured, damage to the aircraft, and
description of theincident.

3. Operator provides the information required.

4. Adds the mishap incident into the database and
inform the operator of the successful transaction.

4. |If the record could not be added, inform the

operator of the failed transaction.

20

b. Add Factor

Use Case: Add Factors

Actors: Operator

Purpose: To add factors contributing to the mishap into the database

Overview: As an investigation commences, factors leading to the mishap may be
discovered. As the factors are discovered, the operator has the ability to add
contributing factor data into the database for a specific mishap. The data
includes the factors from all three levels of categories (first order, second
order, and third order).

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the discovery of a
contributing factor to the aircraft mishap. Operator
selects to add a new mishap into the database.

2. Queries the operator for the factor from the first
order factors

3. Operator selects one factor from the first order
factors that contributed to the accident.

4. Queries the operator for the factor from the
second order factors. These factors depend upon
thefirst order factor selected.

5. Operator selects one factor from the second order
factorsthat contributed to the accident.

6. Queries the operator for the factor from the third
order factors. These factors depend upon the
second order factor selected.

7. Operator selects one factor from the third order
factors that contributed to the accident. Operator
also provides a brief description of the factor.

8. Updates the database by inserting the new factor
in the database for the record containing this aircraft
mishap. Queries the operator for additional factors.

9. Operator indicates he has additional factors or
not

10. Repeat sequences 6 to 10 if additional factors
need to be added.

Alternative Courses

10. Operator indicates that new factor is in a
different second order factor category or different
fist order factor category. Repeat sequences 2-10 as
needed.

3. Edit Recordsin Database

/

—_—

Operator

Edit a Record in Database

1

Edit a Factor

Figure 2.4.

Edit a Record in Database Use Case.

21

Use Case: Edit

Actors: Operator

Purpose: To edit the mishap information as the investigation of the accident gains
information and to edit the factors that contributed to the mishap

Overview: The operator has the ability to change the datain the database data that pertains
to the mishap. The operator also has the ability to edit the contributing factors
that led to the mishap. The operator can perform these functions as additional
information is obtained.

Type: Primary and essential

a. Edit Mishap

Use Case: Edit a Mishap***

Actors: Operator

Pur pose: To edit amishap incident from the database.

Overview: As new information is discovered or an error in the data is discovered about an
aircraft mishap incident that already exists in the database, the operator has the
ability to edit the mishap data.

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the discovery of new
information or error in existing information of an
aircraft mishap incident that exists in the database.
Operator requests a query to search for the aircraft
mishap incident in question.

2. Requests the incident number or the type of

query to search for the incident. For example, select
all mishaps that occurred at this location during this
year.

3. Operator selects the incident that needs to be
edited.

4. Display all pertinent information about this
incident. Display the incident number, data of
mishap, aircraft type, mishap type, mishap class,
organization, category, location, whether any
crewmen were injured, damage to the aircraft, and
description of the incident, any factors that
contributed to the incident that has been entered
previously.

5. Operator makes adjustments to the data item that
needs to be corrected or created.

6. Update the database with the new information.
Inform the operator of success or failure of the
update.

22

b. Edit Factor

Use Case: Edit Factors***

Actors: Operator

Pur pose: To edit factorsin an aircraft mishap incident from the database.

Overview: As an error in the data is discovered about a contributing factor to an aircraft
mishap incident that already exists in the database, the operator has the ability
to edit the factor data.

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the discovery of an
error in existing information of an aircraft mishap
incident that existsin the database.

2. Display the mishap incident and all of its
contributing factors.

3. Operator selects the factor or factors that needs
to be edited.

4. Display the information about the factor.
Display factor description and its first order factor
grandparent, second order factor parent.

5. Operator makes adjustments to the description or
indicates that the factor's parent needs to be
changed.

6. Query the operator for first order factor, second
order factor, and third order factor as necessary.

7. Selectsthe first order factor, second order factor,
and third order factor as necessary.

8. Update the database with the new information.

4. Change Server

Use Case: Change Server

Actors: Operator

Purpose: To change the SQL server

Overview: The operator has the ability change SQL server without closing the HFACS-
ME program

Type: Primary

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the operator choosing
to change the active server.

2. Disconnect to the current server. Request the
address and name of the new server.

3. Typein or select a new server

4. Establish connection to the selected server.

5. Inform the operator of successful change or
failed change.

23

5. Replace the Database

Replace the Databese

Replace the
Database via
FTP

%/

Operator Manager

IS

Replace the
Database via
Disk

Figure2.5. Replace the Database Use Case.

Use Case: Replace Database

Actors: Operator, Manager

Purpose: To replace or update the existing database with a new database

Overview: Once the manager has obtained a new HFACS-ME database, the operator has

the ability to update or replace the existing database with the new database.
The operator has the ability to perform thisvia FTPor via disk operation.

Type: Primary

24

a. Replace the Database via FTP

Use Case: Replace the Database via FTP

Actors: Operator, Manager

Purpose: To replace the existing database with new current version of the database via FTP
mechanism.

Overview: As many mishaps are added to the database, the local databases may not be the same
throughout the location. To bring all databases to the same version, a new database can be
uploaded through the network.

Type: Primary

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the new database being
available at a central site provided by the manager. The
manager informs al clients that a new database is available
for upload.

2. The operator directs the system to upload the new
database.

3. Disconnect all concurrent users on the local system.

4. Creates a backup of the existing database and stores it in
thefile system.

5. Downloads the database from the central site and stores it
on the local system.

6. Uploads the database and starts the server.

7. Inform the operator of the successful or failed operation.

b. Replace the Database via Disk

Use Case: Update the database from National HQ Master Files

Actors: Operator, Manager

Purpose: To replace the existing database with the master database

Overview: The HFACS-ME system’s database can be updated (replaced) by the master database to
bring all organizations to common database. This can be done through network download or
via disc operation.

Type: Primary and Essential

Typical Course of Action

Actor Actions

System Response

1. This use case begins with the master database being
available provided by the manager. The manager informs all
clients that a new database is available for upload or adisc is
available with the database.

2. The operator directs the system to upload the new
database.

3. Request the operator for the method of the replacement
operation.

4. The operator provides network operation method.

5. Disconnect all concurrent users on the local system.

6. Creates a backup of the existing database and stores it in
thefile system.

7. Downloads the database from the central site and stores it
on thelocal system.

8. Uploads the database and starts the server.

9. Inform the operator of the successful or failed operation.

Alternative Courses

4. The operator provides disc operation method.

4.1 Request file location from the operator.

4.2 Operator provides the database location (directory)

25

C. CLASS-RESPONSIBILITY-COLLABORATION (CRC) CARDS

The use cases identified above are really very high-level execution scenarios for
the HFACS program. The next step in our analysis required us to take these scenarios
and identify the objects in each one. We wanted to focus on the actions that these objects
would be responsible for so that we could develop our classes from them. As part our
literature review, we came across Ward Cunningham and Kent Beck's [Ref. 4] class-
responsibility-collaboration (CRC) card methodology. The CRC card method for
developing classes uses 4" X 6" index cards to map responsibilities to objects. A
"responsibility” is a description of the purpose of the class. Theideaisto try to get away
from a description of data and processes by capturing the pupose of the class in a few
sentences. The choice of a card was deliberate - we chose not to allow more than what

would fit on asingle card to represent a single object.

This decision to use CRC cards proved very fruitful. Our CRC cards have the
class rame in the upper-left hand corner, a bullet- list of responsibilities under it in the
left two-thirds of the card, and the list of other classes needed to fulfill that responsibility
in the right third of the card. This simple method of assigning responsibilities gave us
great insight into the links between classes, but still at a high level -- we did not get
bogged down in the details. Most useful was the ability to discuss many different design
possibilities without writing a line of code. By accenting responsibilities instead of data
and methods we were able to develop a fairly thorough understanding the behavior for
each class. By grouping the cards together, we could begin to visuaize what would
become our packages (actually, dynamic link libraries). We could identify classes that
had been given too much responsibility and reassign those responsibilities to other
classes, where appropriate. The most interesting discovery made in creating these cards
was the grestly apparent distinction between the database platform objects and HFACS
program objects. It was very obvious to us that there were certain responsibilities that
were specific to each client and others that were the identical for al clients. Our CRC

cards can be found at Appendix A.

26

D. MICROSOFT ACCESS & DATABASE ENGINES

The Aviation Safety School system requirements specified a Microsoft Access
2000 implementation of the new HFACS system. In our opinion, Microsoft Access 2000
is a very powerful and deceptively complex program that can function as a database
engine, database client, or both. This section discusses the different functionalities of

Access 2000 and the reasoning we used to determine its HFACS implementation.

Microsoft Access has built-in functionality to create desktop applications with
forms, reports, and embedded support for Visual Basic for Applications (VBA). In
addition, the data in an Access database can be manipulated using severa different
programming languages, active server pages (ASPs) via the web, and via third party add-
in tools. A key feature of Access over other databases and development tools is its ease
of use - it is a very effective rapid application development (RAD) platform. When
compared with databases such as Oracle, Access can be (depending upon implementation

options) magnitudes simpler to use for creating similar applications.

A new feature of Access 2000 that made it appealing for the HFACS project is the
ability to use more than one type of database engine. A database engine is the part of a
database management system (DBMYS) that actually stores and retrieves data. Access
2000 provides support for both the Microsoft JET database engine and the Microsoft SQL
Server engine. This is a key distinction. Access formerly alowed only one choice of
database engine: JET. The main problem with JET is that it is not a client/server capable
engine. It is primarily a file server. This means that anytime a client wants to request
something from a JET database everything has to be done on the client-sde. The result is
alot of network traffic and unacceptable response times for more than only a handful of
simultaneous users. With the release of Office 2000, however, Microsoft provided a
royalty free version of the SQL Server engine capable of running on a desktop computer.
This change allowed an Access solution the ability to operate as a stand-alone application
using the same engine as the full version of SQL Server -- it is 100 percent compatible
because it is the same engine. Upgrading from a desktop application to a server-based

application is no longer an issue because the engine is the same.

27

One confusing aspect of the standalone engine is the difference in naming
conventions between various versions of SQL Server. The SQL Server 6.5 and 7.0
compliant version is caled the Microsoft Data Engine (MSDE), while the SQL Server
2000 compatible variant is called Microsoft SQL Server Desktop Edition. Both versions
of the engine should offer the same functionality when used with Access, but this is not
entirely true, as will be described in Chapter 111. For the remainder of thisthesis, in order
to provide greater emphasis on the distinction between full SQL Server and the Desktop
editions, we will refer to both the SQL 7.0 and 2000 versions of the desktop engine as
MSDE unless otherwise stated.

In our research we found that it is a very common requirement to have a JET
based database and desire to migrate it to a more robust database engine - namely
Microsoft SQL Server 7.0 or SQL Server 2000. We adso found that automated migration
tools designed to port JET databases over to SQL server are useful only for very simple
databases. We experimented with using the Microsoft Access "Upsizing wizard" on both
the military and civilian versions of the existing HFACS system with very poor results.
Structured Query Language written in Access using JET did not transfer correctly.
Functions written in VBA did not transfer correctly. In addition, the data types used by
JET are different from those in SQL Server and they did not transfer properly. Finally,
Access uses "queries’ in place of stored procedures and queries did not transfer at al. To
put it smply, the JET database engine is not scaleable and was ruled out as a viable
option for the new HFACS very early in the requirements analysis process.

E. DATA ACCESS TECHNOLOGIES

Following the decision to use Microsoft SQL Server as the database engine for
HFACS, we redlized that the majority of our persona experience with database design
dealt with Microsoft JET. Our review of MSDE indicated that it had a lot to offer in
terms of use with Access and Visual Basic. For example, the desktop engine supports
record-level locking, transaction logs, operating-system integrated security under
Windows 2000, and many other advanced features of full SQL Server (like replication) --
al from Visual Basic and VBA. In fact, we found that the SQL Server engine actually

had a plethora of options, most formidable of which was the selection of programming

28

interface to access the datain it. We feel that most of this complexity is unnecessary and
directly related to Microsoft's proprietary implementation of object-oriented data access
methods.

In the early 90's, the Object Management Group defined methods for the
Common Object Request Broker Architecture (CORBA) that were designed to create an
industry standard for universal data access using object-oriented methods [Ref. 7].
Microsoft, however, has its own competing standards called the Distributed Component
Object Model (DCOM) and Component Object Model (COM). The COM is a binary
standard which defines how an object should present itself to the system, regardiess of
programming language used. COM programs are referred to as “components.”
Generally COM components are compiled into Dynamic Link Library (.DLL) format.
The DCOM is an extension of COM, which allows object creation to span over a network
in aclient-server environment, hence the “distributed” prefix. The Microsoft SQL Server
engine supports DCOM, COM, and other legacy data access technologies. The most
prolific of which are: Object Linking & Embedding for Databases (OLE DB), ActiveX
Data Objects (ADO), Open Database Connectivity (ODBC), Data Access Objects
(DAO), Remote Data Objects (RDO), SQL Direct Management Objects (SQLDMO), and
several lesser variants. Each of these technologies offers various functionalities.
Selection of the method(s) that HFACS would use was a critical decision as the wrong
choice could impose limitations in functionality and/or compatibility later in our
development process [Refs. 7, 14]. A complete study of all these object models is
beyond the scope of this paper, so only a brief description of the major ones is provided
here. For more information consult the Microsoft Universal Data Access web-site at:
http://www.microsoft.com/data/.

1. OLE DB

Object Linking & Embedding for Databases comprises a model consisting of data
providers and data consumers. The providers contain and expose data, while the
consumers use data and services. Basically, OLE DB is capable of providing data from a
variety of sources by using Microsoft COM. OLE DB is just a set of these COM

components designed specifically to access data as producers and consumers. This is

29

particularly powerful because developers can build their own components and include
them as part of the interface -- as long as they use development tools compatible with
Microsoft COM. OLE DB provides the underlying layer of abstraction that enables most
of the other technologies in the Microsoft Universal Data Access initiative. Through this
layer of separation, OLE DB enabled applications can improve data access by allowing
dynamic binding to lots of different data stores. A very interesting capability associated
with this technology, is that once bound, OLE DB components can provide services, like
SQL querying, against data sources that normally cannot perform the processing
themselves (like flat text files). Figure 2.6 illustrates the architecture.

Connections
(ADO, ODBC, .NET)

L

| OLE DB Providers/Consumers |

!
4| Data Sources

Informix
base
Wword Custom Built

Ora:l e EXCd Outl OOk

Figure2.6. OLE DB Architecture.

2. ADO

ActiveX Data Objects support a variety of needs, including the creation of front-
end database clients and middle-tier applications that provide the "business rules' for
interaction with a back-end databases or other applications such as an Internet browser.
Microsoft touts the ADO programming model as "the best of the existing Microsoft data
access programming models [Ref. 15]." This is primarily due to its relative ease of use,
speed, low memory overhead, small disk footprint, and tight coupling with OLE DB.
Connection objects in ADO are easy to use as are command objects and recordset

objects. Where OLE DB is concerned more with accessing data sources, ADO is
30

concerned with mapping the data to visual controls, like data grids and combo-boxes --
which compliments Microsoft visual development languages such as Visual Basic and
Visual C++.

3. ODBC

The Open Database Connectivity (ODBC) interface has been around for many
years. ODBC uses SQL to access data based upon drivers. Drivers are vender specific
interfaces between an application and a specific brand of database. ODBC drivers exist
for everything from ASCII text files, mid-size databases like FoxPro, up to enterprise
databases like Oracle. A problem with ODBC is that not all drivers implement al the
functions of ANSI SQL, so the level of support you get can vary based upon vendor.

4, DAO

Data Access Object technology was developed in 1994 to alow Visual Basic 3.0
to access and manipulate data in local or remote databases. DAO was the first object-
oriented interface that exposed the underpinnings of Microsoft JET and allowed Visual
Basic developers to directly connect to Access tables - as well as other databases -
through ODBC. This was a very powerful feature, but Microsoft is currently only
providing support for it so that applications can be backwards compatible. When
working with JET, there are certain functions that DAO can provide that the other
technologies cannot, but the risk of obsolescence is great and this technology should be
avoided. DAO issuited best for either single-system or small multi- user applications.

5. RDO

Microsoft first released the Remote Data Objects model in 1995 to support Visual
Basic 4.0 [Ref. 14]. RDO was developed to provide object-oriented methods to access
high-end ODBC relational data sources like SQL Server or Oracle. RDO provides the
properties and methods needed to access "more complex” stored procedures and result
sets. The idea behind RDO was it could save Visual Basic programmers a great deal of
time by alowing them to access the RDO interface without directly coding the ODBC
APIL. In the past, RDO has proven to be a popular interface for the large relational
databases. Similar to DAO, however, Microsoft is currently only providing support for it

so that applications can be backwards compatible.

31

6. SQLDMO

The SQL Distributed Management Object interface is a proprietary feature of
L Server. The SQLDMO.DLL communicates with SQLSVC.DLL (the database
abstraction module), which accesses ODBC32.DLL, which in turn implements the SQL
Server ODBC driver. As evidence of its power, if you are familiar with the SQL Server
Enterprise Manager, much of the functiondity you see in it was implemented with
SQLDMO [Ref. 21]. SQLDMO provides management functions for SQL Server a a
very low level. For example, instances of the server can be started and stopped,
regardless of connection state -- you can stop the server even if users are logged on. You
can add users, set permissions, add databases, and tables. In addition to management
functions, SQLDMO can be used to run stored procedures and perform data access type
functions. The problem with SQLDMO is that it is not easily accessible via the Internet
and therefore is undesirable for other than management functions. Microsoft is phasing
out SQLDMO in favor of Windows Management Instrumentation (WMI) type interfaces.
The purpose of WMI is to define a nonproprietary set of enterprise management
specifications. These specifications allow management information to be shared between
applications that run on different operating systems Luckily, WMI currently prescribes
standards that are backwards compatible with SQLDMO.

The brief overview you just read is just the tip of a very large iceberg when it
comes to evaluating Microsoft data access technologies. We found this part our research
very troublesome and overly complicated. In the end, we discovered that SQL Server
comes with its own native OLE DB provider, which means that SQL Server does not
have to be paired with a web-server to provide support for multiple tier database solutions
- aslong as you choose OLE DB compliant technologies to access the data. Multiple tier
solutions will be discussed more in chapter IV, but we mention it here to demonstrate that
scalability concerns were addressed in all aspects of our design. Since OLE DB is
natively part of the SQL environment and such a big part of Microsoft's current Universal
Data Access strategy, it made sense to use it over ODBC. In addition, snce RDO and
DAO both seemed to be legacy technologies whose functionality is slowly being

consumed by ADO, it made sense to use ADO wherever possible. We recognized,

32

however, that in dealing with MSDE as the engine for desktop versions of HFACS, we
would need access to management functions beyond the capability of ADO. For these
needs we would use SQLDMO to access the SQL engine through its ODBC driver.

These facts, coupled with the Microsoft and severa third party recommendations
to use ADO and OLE DB led us to select them as our primary data access methods
wherever possible. The new HFACS system actually uses four of these technologies:
OLE DB, ADO, ODBC, and SQLDMO, which will be expanded upon throughout this
paper.

F. PROGRAMMING MICROSOFT ACCESSAND SQL SERVER

Microsoft Access has a history of notorious incompatibilities between versions.
Since 1993, Access has undergone fundamental changes with each new release. Access
2.0 applications used Access Basic rather than VBA and did not convert to Access 95
format. Access 95 implemented many new technologies and did not always convert to
Access 97 format. Our personal experience with trying to upsize old versions of HFACS
from Access 97 to Access 2000 clearly demonstrated that there were problems with it as
well. Based on this history alone we concluded that the next version of Access would no
doubt have similar problems. The requirement for an Access based solution from our
sponsor was firm and at this point seemed somewhat constraining. The search for a

method to lessen the impact of version changes became paramount.

As mentioned earlier, Access has embedded support for Visual Basic for
Applications. The SQL engine, however, is accessible via any language capable of
creating COM objects. This realization presented a unique option for mitigating the
effects of future Access version incompatibilities. Using Visual Basic or C++, we could
design ActiveX object-oriented components that encapsulated much of the code that
would normally be written within Access. These compiled components would reside
outside of Access theoretically making them less susceptible to version changes and
maximizing potential for code reuse. Access would just be a client shell and all business
logic would be placed in these external components. The beauty of this approach is that
the RAD methods of Access used to create forms, reports, and controls were ill
available. In addition, this approach is in keeping with the migration path of a small-

33

scale application to a larger enterprise level one using OLE DB and DCOM. The
location of the external components (either client-side or server-side) would define the

architecture of the system (3-tier or n-ier).

Removing the business logic from Access alows HFACS to grow by enabling
maodification of component code without making changes (or many changes) to the client
code in Access or the database elements in SQL Server. Since code in the componentsis
compiled, changes in versions of the programming language used to create them are
much less significant in over the lifespan of the program. We knew this would be
especially significant for HFACS because of Microsoft's upcoming release of new
technologies like C# and Visual Basic .NET. Regardless of the technology changes
associated with these upcoming releases, current versions of C++ and Visual Basic
should still be able to create compiled components compatible with new versions of
Access and SQL Server. Since code is removed from the front and back-end Microsoft
products, we believe that components are much less likely to suffer from versioning
issues. The disadvantage of all this of course, is the inherent complexity in creating these
components. As alluded to in the previous sections, the vast array of features in Access
and SQL Server make creating components to take advantage of these products a very
ambitious goal.

Based on our decision to implement components, our next decision involved
selection of a COM compatible programming language. In keeping with the requirement
for a Microsoft based solution our choices were either Visual Basic 6.0 (VB) or Visual
C++. Both C++ and VB are capable of implementing the four data access technologies
that we knew we would need. Since Access provides inherent support for VBA and
Visual Basic 6.0 is a superset of this technology, VB could provide a single language for
use in both Access and the components. C++, on the other hand, offered greater support
in terms of threading (which will be discussed further in Chapter 111). A magor
disadvantage of C++, however, was its added complexity in a program designed for
RAD. In the end, the idea of a using VB in al coding for HFACS was truly the key
factor in weighing advantages and disadvantages. Our final choice for programming
language was Microsoft Visual Basic 6.0 using Service Pack 5.

34

G. MICROSOFT DEVELOPMENT EFFORTS

Despite our vision of immunity from version changes in Visual Basic, Access, and
L Server, we conducted a review of Microsoft development efforts to ensure our
design would comply with the product manufacturers existing interoperability guidance.
Our findings:

1. Access 2002 [Ref. 16]

According to Microsoft, Access 2002 databases (based on the JET database
engine) will work with two database file formats — Access 2000 and Access 2002. In
Access 2002, you will be able to modify data and make design changes to an Access 2000
database. During an Access 2002 rollout, Microsoft recommends using the Access 2000
file format. In this mixed environment, both Access 2000 and 2002 users will have a
default file format of 2000. Features that are new in Access 2002 will be available when
using an Access 2000 file in Access 2002, but will not be available when the same file is
used in Access 2000. When afileis opened in Access 2000, any functionality specific to
Access 2002 is simply ignored. In a mixed file format environment, Microsoft strongly
recommends design and update of all databases using Access 2000. If designed with
Access 2002 using the Access 2002 file format, users @nnot open the database with
Access 2000. Although not specifically stated by Microsoft, it is assumed that features
compatible with a SQL Server engine will be similarly compatible with both 2000 and
2002 file formats, therefore HFACS should be compatible.

In addition to the file format changes, Access 2002 will support both ANSI-89
SQL (also called JET SQL) and ANSI-92 SQL, which have new and different features.
The two ANSI SQL query modes, ANSI-89 and ANSI-92, are not compatible. Since
HFACS uses SQL Server as its database engine, our implementation already uses ANSI-
92 SQL and this should not be a factor. Finally, Office 2002 will come with the SQL
Server 2000 Desktop Engine, not MSDE 1.0. Although both of these database engines
will be able to coexist on a single computer, they are not 100% compatible. This will be
discussed in more detail in Chapter I11).

35

2. Visual Basic.NET [Ref. 17]

Microsoft Visual Basic.NET will be a complete rebuild of the current version of
VB. Visual Basic.NET will take amagor step toward making Visual Basic a fully
featured object oriented language with new features including full object-oriented design
capabilities and free-threading. Several limitations of VB 6.0 that VB .NET is planned to
remedy were problems in our development of HFACS. Workarounds will be discussed
in subsequent chapters. For this reason, we believe upgrade of the HFACS components
to VB .NET when it is released will be desirable. Microsoft states that "Visual
Basic.NET will open and upgrade Visual Basic 6.0 projects to Visual Basic.NET
technologies, but in most cases you will need to make some modifications to your
projects after bringing them into Visual Basic.NET." [Ref. 18] Microsoft recommends a
host of considerations to enable future upgrade to VB .NET [Ref. 18], the most
significant of which are discussed below:

Use of early binding of variables. Objects should be declared as the data
type that they redly are rather than as type Object. In VB .NET late-
bound objects can introduce problems when resolving default properties.
Additionally, the Variant data type is replaced by Object, so Microsoft
recommends discontinuing its use. Our HFACS code uses early binding
wherever possible.

Use of ADO for data access. VB .NET will provide support for DAO,
RDO, and ADO in code with some modification. However, Visua
Basic.NET does not support DAO and RDO data binding to controls.
Since HFACS does not use RDO or DAO, modifications should be
relatively smple.

Avoidance of the Double data type for doring dates. HFACS uses the
Date data type for dates.

Avoidance of fixed-length strings in user-defined types. HFACS does not
implement any user defined types, only user defined Classes.

Resolve Parameterless Default Properties using dot- notation. HFACS
uses complete object property references, so this should not be a problem.

Use of enumerated constants instead of underlying values. Wherever
possible HFACS uses the enumerated constants, however, there are some
instances where zero resolves to null for which zero has no enumerated
value.

Use specia syntax for declaring fixed arrays. The current method for
declaring fixed arrays (e.g. myArray(5) As Integer) will not work with

36

VB.NET. Syntax in the following form should be used instead: Dim
MyVariable As MyType; ReDim MyVariableMyArray(5) As Integer.
HFACS uses this recommended syntax.

Avoid Legacy Features. Because they have been removed from the
language, the following keywords should be avoided: Def<type>,
Computed GoTo/GoSub, GoSub/Return, Option Base 0|1, VarPtr,
ObjPtr, StrPtr, and Lset. HFACS uses none of these keywords except
On Error GoTo for error handling — for which there is no Microsoft
recommendation to remedy.

As previoudly stated, the Visual Basic 6.0 format should remain viable as long as
versions of Access and SQL Server provide support for COM components-- so migration
of HFACSto VB .NET isn't mandatory, just desirable at some point. Interesting to note
that a parallel situation exists for the Visual C++ programming language, & Microsoft
has similar plans for migration to C# which aso implements .NET technology. For this
reason, our selection of Visual Basic as programming language remained intact.

3. SQL Server

Microsoft released the SQL Server 2000 family of products less than six months
prior to our development effort. No service packs existed and there was no publicly
accessible information related to follow on versions available at that time.

H. THE CONCEPTUAL MODEL

The use cases and CRC cards developed in our requirements analysis effort
coupled with our research of data access technologies, programming languages, and
trends in Microsoft products enabled us to develop a vision of our HFACS system.
Armed with this information we set about creating a conceptual framework for the design
of the system. As part of this process we inferred the following:

HFACS should consist of a Microsoft Access client application using
external compiled components to encapsulate business processes wherever
possible. This would provide greater opportunity for code reuse and
mitigate the effects of version changesin Access.

HFACS would implement the SQL database engine and therefore should
be devel oped so as to connect to an instance of MSDE as well as true SQL
server. In order to facilitate differences in these connections, a component
would be needed to perform management functions such as installation of
the programs, installation of the database, logon options, and starting and
stopping the server. Management functions of this depth hawe to be
performed using SQLDMO and are specific to each client, therefore, this

37

component must also reside on the client. Figure 2.7 illustrates the
conceptual model for this component.

The business processes associated with the actual manipulation of the
objects in the database were not specific to each client. Based upon our
review of DCOM and COM, we recognized that to provide scalability for
HFACS, further investigation into which technology to implement would
be needed. What we could conclude, howewer, is that these processes
needed to be encapsulated in a component separate from the connection
component. Furthermore, this component should not include any user
forms or GUI components making it more abstract and versatile. Figure
2.8 illustrates the conceptual model for this business-logic component.

iTypeLogon INIFile INIFile MSDE
Controller
HFACS
Connection
HFACS Main
ODB Logon
Update
Controller
Disk Update FTP Update

Figure2.7. Conceptua Model for the Connection Component.

38

Aircraft Database Factors Mishap Type

Type
Organization Mishap
Factors
Mishaps
Add / Mishap Type
Delete Query Base Mishap
Class Location

Find

Figure2.8. Conceptual Model for the Business -Logic Component.

From these findings it became clear that the development effort should be divided
into two phases. Phase | should focus on development and implementation of the
HFACS Connection component. Phase 1l should do the same for the HFACS business
logic component. The development of the connection component was to be executed first
because it would involve creating the foundation and environment for the business logic
component to operate in. In addition to creation of the connection component and the
inherent connection functions, Phase | would involve creating the installation programs
needed to deploy and configure al the pieces of this operational environment on a wide
array of platforms supporting various editions of SQL Server and Windows operating
system. If possible, this component should be capable of working with different versions
of SQL Server aswell as different editions.

Upon completion of Phase I, we envisioned a much broader understanding of the
SQL engine, which would help us in developing database schema and selecting an
architecture (DCOM, COM, 3tier, or ntier) for the business logic component in phase
I1. The high-level conceptua architecture is illustrated below.
39

Client Host To Be Determined

Functions

| Voter ‘

/ Business-Logic \
Functions

| Voter |

/ AccessClient ‘

| Voter |

Figure2.9. Conceptua Architecture at the End of Requirements Analysis.

Within phases, we planned to use Spira Development Model (SDM) [Ref. 19]
techniques. The SDM made the most sense to us because although requirements had
been fairly well defined for HFACS, there was till a substantial amount of risk
associated with our lack of experience with SQL Server, object oriented programming
with Visual Basic, and the Component Object Model. In addition, we knew that in the
course of our development process, requirements might change. For instance, new
requirements for the commercial aircraft version of HFACs might arise. In addition,
there was a good chance that one of the other development groups could make
requirement changes. The SDM provides built-in methods for mitigating these risks
through its use of development stages. Each s$age would be a norma development
project producing a superset of the prior stage and yet a subset of the final system.
Planning for each successive stage would be structured to exploit the experiences of the

former stages and to reduce perceived risk factors in the current and future iterations.

40

[l. HFACSCONNECTIVITY COMPONENT DEVELOPMENT

A. OVERVIEW

This chapter provides a detailed description of the design and implementation of
the HFACS connectivity component. The component was constructed as an ActiveX
dynamic link library, which is included as a reference in the Access client program.
Access Client programs that are used in conjunction with the SQL Server engine are
called Access Data Projects and can be identified by their ".adp" file extension.

We began development of this component by refining its conceptual model
through interaction diagrams using the UML. Two types of interaction diagram were
used in this process. sequence diagrams and collaboration diagrams. Both types of
diagrams alowed us to refine our conceptual model into class diagrams. Once class

diagrams were in place, we identified stages of spiral development and began coding.

The culmination of this phase was the HFACS instalation program and
connection dynamic link library incorporating the functionality needed to install
Microsoft Access Runtime, the SQL Server engine, the Access client data project file, an
initialization file used for maintaining client installation settings, a separate compiled
FTP server, and the methods to install and replace instances of the HFACS database.

B. SEQUENCE DIAGRAMS

Our first step in refining the conceptual model was to create Sequence diagrams
for the typical course of events of critical use cases in order to better understand system
behavior. The sequence diagrams that follow illustrate the actor interactions and the

operations initiated by them, as well as, their order.

41

Change Server

:Operator :HEACS-ME

| new_HFACSConnection() I
= disconnect()

I
[l
} selectServerName() <———1
| <<
} setServerName()
' =
I connect()
!_. _<:____!
restartMSDE()
<{————-|
success()
| <
L]
]
|
|
|
|
|
!

Figure3.1. Change Server Sequence Diagram.

Replace the Database via FTP

:Operator :HFACS-ME }

| new_HFACSConnection() I

| ~>T1__disconnect()
} selectServerName() <f____'|
| <<
} setServerName()
' =
I connect()
!" _<:____!
restartMSDE()
<{————-|
success()
| N
L
_
|
|
|
|
|
!

Figure3.2. Replacethe Database via FTP Sequence Diagram.

42

3. Replace the Database via Disk

:HFACS-ME

performDiscUpdate()

:Manager :Operator

| newMaster(true) |
|I' S || getUpdateDisc()
I I I >
i } i success()

I -
| 1

I L

|I |

- |

| |

| |

| |

| |

| |

! !

Figure3.3. Replace the Database via Disk Sequence Diagram.

C. COLLABORATION DIAGRAMS

Analysis of our Sequence diagrams allowed us to create Collaboration diagrams
to illustrate allocation of responsibilities to objects in the system, specifically
demonstrating how they interact via messages. The diagrams that follow provided the
level of detall needed isolate the key messaging functions between objects in the

component.
1 Change Server

|
I :
L M1:MSDE |
'/i\‘ 1: disconnect()
[

2: selectServerName()
—_—>

HFACS_

Connection <

|
} 4: connect(loginID, password)

——

\¢I
6: success()

[m——————— ———>
| MLMSDE |

|

L

o/

\\.//\

=

5: resfartMSDE()

Figure 3.4.
43

————————— 1

| OL:Operator |

3: setServerName(serverID)

T —— 1
| Ol:Operator!

Change Server Collaboration Diagram.

2. Replace the Databasevia FTP

1: getUpdateFTP()
—_—
:Operator UpdateController
8:success() \LZ: disconnect()

[M1:MSDE

7: restartMSDE()

F1:FTPUpdate

3: dropDB(dbName)

F1:FTPUpdate

F1:FTPUpdate M1:MSDE

4: connect(loginID, password)

T \L 5: gotFileDoNext()

6: gotFileLast()
F1:FTPUpdate

Figure3.5. Replace the Database via FTP Collaboration Diagram.

3. Replace the Database via Disk

3: success()

<—
:DiskUpdate
1: getUpdateDisc() /‘\ 2: performDiskUpdate()
—— —_—
:Operator :UpdateController

Figure3.6. Replace the Database via FTP Collaboration Diagram.

D. CLASSDIAGRAMS

The information gleaned from the Collaboration diagrams, empowered us with
the knowledge needed to refine our conceptual model. Figure 3.7 illustrates an
intermediate level view of the key classes. The descriptions that follow provide abridged

definitions and explanations for these key classes. They are provided here to document

44

their general functionality in prose format and provide a basis for subsequent discussion
of development issues. Detailed HFACS connection component class diagrams
illustrating all methods, as well as, complete descriptions of the actual classes the can be
found at Appendix B & C, respectively.

HFACS MSDE
Connection dbName:string
svriD:string o loginlID:string

loginID:string S ﬁ password:string
password:string § é’ connect()
selectServerName() g HFACS_Main 5 disconnect()
setServerName() o — restartMSDE()
| serverName:string success)
dbName:string dronDRA
typeDB:string A
. Main()
UpdateDisk - -
_ 2 2 FTPUpdate
performDiskUpdate () o g update| ™ ghName:string
success() s S via MDFFile:string
i Update_Controller FT connect()
disconnect()
getUpdateFTR() gotFileDoNext()
getUpdateDisk () gotFileDoLast()
Figure3.7. Interim Class Diagram.

1 HFACS Connection Class

The HFACS Connection class encapsulates the functionality of the entire
component and provides the interface for all other classes. It isthe only class with public
members accessible from outside of the component. Instantiating the HFACS
Connection class allows the calling program to connect to a SQL server by passing
connection arguments. Connection arguments can be input via logon dialog box or by
reading stored values from an initialization file (HFACS.ini). The connection process
logic is capable of starting the SQL server using SQLDMO objects encapsulated by the
MSDE class. Instances of this class aso provide public methods for the calling program
to change the server in mid operation of the HFACS-ME system and for replacing the
HFACS database with updated versions via disk/FTP.

45

HFACS_Connection
svriD:string
loginID:string
password:string
selectServerName()
setServerName()

Figure3.8. Class Diagram for HFACS Connection.

2. HFACS Main Class
This class is the “Main” class for the component. Visual Basc 6.0 requires a

Main class for al dynamic link library components function. For those familiar with
C++, it issimilar to “Program Main ” — required for runtime execution. It is instantiated
any time the .dll is called (when the program starts running). In the context of our use, it
is aso used to store global variables such as the SQL server name, database name, and

type of database.

HFACS_Main
serverName:string
dbName:string
typeDB:string
Main()

Figure3.9. HFACS_ Main Class Diagram.

3. UpdateController Class

The UpdateController class is the business logic class responsible for controlling
the FTPUpdate class and the UpdateDisk class. It facilitates the manipulation of forms
and other objects when replacing the database via FTP or the disk method.

Update_Controller

getUpdateFTP()
getUpdateDisk ()

Figure 3.10. Class Diagram for UpdateController Class.

46

4, UpdateDisk Class
UpdateDisk is responsible for performing an update of the HFACS database from

adisk/network share.

UpdateDisk

performDiskUpdate()
success()

Figure3.11. Class Diagram for UpdateDisk Class.

5. FTPUpdate Class

This class is responsible for performing an update of the HFACS database via
FTP. Since a SQL Server database is comprised of two files (HFACS.mdf &
HFACS log.Idf), it has methods that alow it to monitor download and installation o
each file, separately.

FTPUpdate
dbName:string
MDFFile:string

connect()
disconnect()
gotFileDoNext()
gotFileDoLast()

Figure 3.12. Class Diagram for FTPUpdate Class.

6. M SDE Class

The MSDE class performs all SQLDMO object manipulation. It is responsible for
starting the MSDE or QL Server engine, ensuring that the HFACS database is installed,
and managing database updates. Additionally, it provides the functionality to attach and
detach the database files fed to it by the UpdateDisk and FTPUpdate classes.

47

MSDE
dbName:string
loginID:string
password:string
connect()
disconnect()
restartMSDE()
success()
dropDB()

Figure 3.13. Class Diagram for MSDE Class.

E. IDENTIFICATION OF SDM STAGES

As discussed in the previous chapter, we utilized the Spiral Development Method
(SDM) as aguide to control risk throughout the component devel opment process. Before
beginning coding of the HFACS DLL component we had to choose which version of
QL Server to develop our application with. At the time of this writing, Microsoft SQL
Server 2000 had only been commercialy available for approximately six months.
Microsoft SQL Server Version 7.0 was definitely the more mature database engine with
plenty of available documentation and support on the Internet. Both versions offered
support for running as a desktop engine dedicated to a single instance of HFACS, as a
single server supporting large numbers of clients or as part of a cluster of servers
supporting entire enterprises. Both versions also offered support for multiple processors,
discretionary security, transactions, and triggers. Based on our Microsoft's prior tendency
to make new programs backward compatible, we chose SQL 7.0 and MSDE 1.0 as our
development version of the engine. We felt that migration of the code to include SQL
2000 functionality might be difficult, so we planned to do it as part of a separate stage.
Based on this decision we identified the following three stages of cyclical development:

Stage 1 - Creation of an HFACS Connection component compatible with
the SQL Server 7.0 engine.

Stage 2 - Modification of the component to make it compatible with both
the SQL Server 7.0 and 2000 engines.

Stage 3 - Creation of installation programs to install and configure the
component and all related files on Windows 95 or newer platforms.

48

F. IMPLEMENTATION - STAGE 1

Since the HFACS Connection component is a stand-alone compiled ActiveX
dynamic link lbrary, it was developed using the Microsoft Visual Basic 6.0 Integrated
Development Environment (IDE) program. Microsoft Access has it's own native
development IDE and cannot use the true VB 6.0 IDE. We knew that switching back
and forth between the two IDEs and trying to find faults would be difficult. Our strategy
for avoiding this was to create the classes of the component and a separate "test” program
to validate class behavior all within the VB IDE environment. Visual Basic provides
support for this in the form of a "Visua Basic Group" (.vbg) project. This plan worked
well. Using the .vbg we could place two separate projects in the same workspace
allowing them to run in the IDE at the same time. By initially testing class behavior
within the VB IDE instead of from the external Access environment, we were able to
isolate problems to their sources much more quickly -- without all the IDE switching. In
addition, when the time came to test the component with Access, since we knew it
worked in VB, we immediately knew the problem was either on the Access side, or in the

interface.

The first challenge we faced in our coding was the inability of Visual Basic 6.0 to
provide true inheritance. We were aware that Visual basic only provided "has a' or
compositional inheritance, but our initial coding efforts proved this limitation difficult to
adapt to. Luckily, Visual Basic does provide support for secondary interfaces to classes
using the Implements keyword. We attempted to use base classes and interfaces
wherever possible to make up for the lack of true inheritance. This provided many
benefits, most notable was the ability to fix a bug in a base class and have all the derived
classes "inherit" the change through the interface -- without having to edit code in the
other classes. We only had to modify code in derived classes when we changed the

interface of the base class, added new properties and methods, or deleted existing ones.

The first truly unforeseen difficulty we came across was the inability of Visual
Basic to define a constructor with parameters. In more mature object oriented
programming languages, a constructor can be defined in the class module and executed

whenever a new instance is created. Because you define the syntax of the constructor

49

method, you can force the client code to pass arguments that are needed to create the
object, or return an error if the required information is not provided. In fact, severd

constructors can be defined which take different parameters. In VB, there are no
constructors. Instead, there is a class initialize event which can be programmed to ensure
all objects start in consistent state. The problem is that the classinitialize event cannot be
overridden and it cannot take arguments. Thisis a serious shortcoming in VB that will be
corrected in VB.NET. To work around this, we used pseudo-constructor methods
wherever possible. To create a pseudo-constructor, a public function was defined in a
globally accessible module (the HFACS _Main class). These functions were given names
like "New_MSDE " with function prototypes including optional parameter lists. Optional
parameter lists have to be used because functions cannot be overridden. When these
functions are called, they perform two operations. 1) creation of an instance of the class
and 2) execution of a Friend "init" function from the class which takes matching optional

parameters. |If this sounds confusing, it is. Let me give a specific example. Consider the
following code excerpt from the MSDE class:

kkhkhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkhdhhkhkkkkikkk%x%x

Psuedo Constructor for the MSDE Class

kkhkhkkkhkhkkkhhhkkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhdhhkhdhhkhdhhkkhdhkkhd,kxk,x*%x

This public function is placed in a globally accessible module. Notice that it takes

10 optional arguments.

Public Function New_MSDE(Optional sUser As String, _
Optional sPassword As String,
Optional sSvrName As String,
Optional SMDFName As String, _
Optional sDBName As String,
Optional sInstDirectory As String,
Optiona sAutomaticLogon As String, _
Optional sFirstRunCheck As String,
Optional SNTAuth As String,
Optiona sTypeDB As String)

50

The first operation performed is the creation of an instance of the MSDE class.
This invokes the class Initiaize event of the MSDE class, which can take no arguments
as parameters. In order for this to work, the oMSDE object variable must be declared
prior to calling the function. In this case, it was declared as a reusable package (DLL)
level variable.

Set oMSDE = New MSDE

Next, the optional arguments are verified. If they are missing, then predefined
values stored in a .DLL level instance global variable are used. This ensures al instances

of the object are created in consistent state.

If IsMissing(sUser) Then sUser = gStrUID

If IsMissing(sPassword) Then sPassword =""

If ISMissing(sSvrName) Then sSvrName = gStrServerName

If IsMissing(sMDFName) Then sMDFName = gStrDatabaseFileName

If IsMissing(sDBName) Then sDBName = gStrDatabaseName

If IsMissing(sInstDirectory) Then sInstDirectory = gStrAppPath

If IsMissing(sAutomaticLogon) Then sAutomaticL ogon = gStrAutol ogon
If IsMissing(sFirstRunCheck) Then sFirstRunCheck = gStrFirstRun

If IsMissing(SNTAuth) Then SNTAuth = gStrNTauth

If ISMissing(sTypeDB) Then sTypeDB = gStrTypeDB

Next, since member functions can have parameters, the Friend function member
of the MSDE class instance just created is called and the parameters are passed to it.

OMSDE.Init sUser,
sPassword,
sSvrName, _
sSMDFName, _
sDBName, _
sinstDirectory,
sAutomaticLogon,
sFirstRunCheck,
SNTAuth, _
sTypeDB

End Function

51

Now lets look at the pertinent functions in the MSDE class.

kkhkhkkkhkhkkkhhhkkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhdhhkhdhhkhdhhkkhdhkkhd,kxk,x*%x

MSDE Class Code Extract

kkhhkkkhhkkkhhhkkhhhkkhhhkhhhkhhhkhhhkhhhkhkhhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhkhhhkhhhkhhhkhkhhkkhkhkkkkkkx%x%x

This code defines the Class_Initialize event, which is really a default no-argument

constructor. It basically populates the module level variables.

Private Sub Class_Initialize()

sUser = gStruiD

sPassword = gStrPWD

sSvrName = gStrServerName
sMDFName = gStrDatabaseFileName
sDBName = gStrDatabaseName
sinstDirectory = gStrAppPath
SsAutomaticLogon = gStrAutoL ogon
sFirstRunCheck = gStrFirstRun
SNTAuth = gStrNTauth

sTypeDB = gStrTypeDB

End Sub

Here we see the custom "Init" function called by the psuedo-constructor that

results in the mimicked behavior of a constructor that takes arguments.

Friend Sub Init(sPassedinUser As String,
SPassedInPassword As String,
SPassedInSvrName As String,
sPassedinMDFName As String,
sPassedinDBName As String,
SPassedIninstDirectory As String, _
SPassedlnAutomaticLogon As String, _
sPassedInFirstRunCheck As String,
sPassedInFirstRunAfterUpdate As String, _
SPassedInTypeDB As String)

sUser = sPassedlnUser

sPassword = sPassedlnPassword
sSvrName = sPassedInSvrName
sMDFName = sPassedinMDFName

52

sDBName = sPassedinDBName

sinstDirectory = sPassedIninstDirectory
sAutomaticL ogon = sPassedl nAutomaticL ogon
sFirstRunCheck = sPassedl nFirstRunCheck
SNTAuth = sPassedInFirstRunAfterUpdate
sTypeDB = sPassedIinTypeDB

End Sub

This psuedo-constructor mechanism worked well in the pure visua basic
environment, however, when we compiled the DLL and tried to create an
HFACSConnection object using the psuedo-constructors in the global modules of the
package from Microsoft Access -- it didn't work. As it turns out, global modules of a
compiled DLL only have package level scope. So, they are not visible from Access
because Access is external to the package. This was not a shrowstopper, but it reduced the
effectiveness of the psuedo-constructor method and caused heavier reliance upon global

variables.

The next unforeseen problem we encountered in our implementation was VB's
lack of support for free threading. In free threading, each thread can access the entire
process's data area and all threads share the applications global variables. In the future,
Visual Basic .NET will provide free threading. The main problem with free threading is
that you have to keep track of al the shared resources, including variables. Y ou can very
easily end up with a deadlock situation. Visual Basic 6.0 tries to provide an easier
method for dealing with multiple threads through the use of "apartment” threading.
Apartment threading, however, only provides different threads for instances of entire
components. For example, three different users could access the HFACS component
from different computers and each would receive their own instance of the objects in the
DLL. These instances of the DLL would each have their own thread and reside in their
own "apartment." Each apartment has its own set of variables and code from one
apartment can't access that of another apartment. This effectively eliminates the
scheduling problems associated with shared globa variables that are very problematic in

more other programming languages. The problem with this approach is that you can't

53

directly launch a new thread from within your apartment. Here are the specifics of our

problem.

As part of the HFACS connection component's functionality, it needed to be able
to connect to an external FTP server and download replacement copies of the HFACS
database files. The FTP class we used to provide this capability wraps the functionality
of the WININET.DLL file that 5 part of all Windows platforms. The WININET.DLL
provides APl hooks to the operating system for Internet connectivity. This solution
worked well with one exception. When the user downloaded afile, the HFACS program
became blocked waiting for the getFile method of the cFTP class to successfully
download the database update. As a result, no screen updates could occur within
HFACS. |If the user launched an instance of another program while the FTP was
downloading, and then minimized the application to view the status of the download, the
HFACS screen would not redraw. The user was left with a screen full of white unpainted
controls -- it was impossible to determine if the FTP was till in progress or if the
computer had locked-up and become unresponsive. To work around this problem

required a rather complex implementation implementing a " callback™ technique.

The callback mechanism works like this: the client application calls a method
from an external component compiled as an executable that will take a relatively long
time to execute, it passes a reference to an object defined in the client application and the
external component stores this reference in local variable. This variable is then used to
call back to the client to inform it that something has occurred. Since the external
component is an ActiveX executable file, it runs in its own process space. To make use
of this functionality, the cFTP class was removed from the HFACs Connection
component and an interface class was designed for it. These two classes were then
compiled as a separate executable FTP server. A reference to the compiled file was
included in the HFACS Connection component and a callback class was created using the

"Implements” keyword. Figure 3.14 illustrates a high-level overview of the concept.

Connection

Functions

FTP Update Form

Callback Interface
Implementation

1. HFACS Connection
component instantiates
FTPinstance of FTP

Server running in itsown
process.

HFACSJdII

Server

FTP Class

Callback Base Class

2. When FTP download is
complete, Server “calls-
back” the Connection
component through it's
implementation of the
callback base class HFACSFTP.exe

interface.

Figure3.14. OLE DB Architecture.

The callback function worked well for us. Since the FTP file download was now
running in its own process space, the screen in the HFACS component was free to
redraw. This implementation also resulted in better performance of the cancel button on
the FTP form, which became much more responsive to user interaction.

G. IMPLEMENTATION - STAGE 2

After several weeks of enhancements and code revisions, the component appeared
to be working well enough Pr us to begin contemplating modifications to enable it to
work with the SQL Server 2000 engine. This marked the beginning of stage 2. As
briefly mentioned in chapter Il, our literature review indicated that both versions are
supposed to be forward compatible -- that is, a SQL 7.0 database file can be read by SQL
2000 [Ref. 20] and that the existing SQLDMO modéd is compatible with a SQL Server
2000 database, less the new features of SQL Server 2000 [Ref. 21].

Our first step was to install SQL Server 2000 Standard Edition on our
development computer and test our existing code with it. SQL Server 2000 installed a

55

new version of SQLDMO, made some changes to file locations, and offered several new
options for dealing with new support for server "instances’, but otherwise the SQL Server
2000 ingtallation was very similar to that of SQL Server 7.0. Using our Visua Basic test
program we successfully used our existing HFACS Connection component to start the
server, detach a database file, and stop the server. The first problem we encountered was
with attaching a database file. As it turned out, the new version of SQLDMO required
use of brackets ("[" and "]") to separate arguments in its attachDB method. The old

version of SQLDMO would accept either spaces or brackets. This was asmple fix.

The next problem proved more difficult to solve. The doConnect method of our
HFACSConnection class provides the functionality to create and test a connection to a
new server. The doConnect method created an instance d the frmODBLogon class,
which in turn used SQLDMO to verify the connection information specified by the user
in the logon dialog box. Thiswas accomplished by: 1) attempting to start and connect to
the server; and 2) looping through database objects on the server to confirm existence of
the HFACS database. For some reason, the SQL 2000 version of SQLDMO will not
allow starting of a remote server. This proved troublesome, as the ability not just to
connect to a remote instance of the database, but also to start it, was a desirable feature.
An exhaustive search of the Internet and newsgroups faled to yield any valuable
information related to this problem. As best as we could discern, this problem is related
to the added features associated with the ability of SQL Server 2000 to create multiple
separate "instances’ of SQL servers on the same machine. These instances listen for
clients on different ports. In SQL Server 7.0, port 1433 was used for al network traffic,
unless specifically changed to another port by a database administrator. Apparently, the
new version of SQLDMO doesn't know which port to use and does not use the default of
1433. As a workaround, we modified the MSDE and frmODBLogon classes in our
component to use ADO instead of SQLDMO for verifying remote connections.
Although this workaround does provide the functionality to validate a user's logon

information, the capability to actually start aremote SQL server was |ost.

56

Now that we had modified our component to work with both versiors of the SQL
engine from a pure Visual Basic environment, we were ready to compile and test it using
Access as afront-end. In our premier test, we encountered a host of errors, including:

All existing stored procedure names were displayed with ;1" at the end.

None of the stored procedures could be run without receiving an error
stating that the stored procedure could not be found.

If you tried to use the security management functions of Access to add
logons and users to SQL Server, an error message stating "components
falled to load or initialize" was displayed.

You could not create or design tables, database diagrams, or stored
procedures without errors.

Since our component worked perfectly in the pure Visua Basic environment, we
quickly concluded that there were significant compatibility problems between Access
2000 and the new SQL Server 2000 engine. Luckily, an Internet query identified that
Microsoft had already acknowledged these problems and addressed them through two
fixes. The first fix was Office 2000 Service Release 1/1a. This service release seemed to
fix al the problems except for the ability to create or design tables, database diagrams, or
stored procedures without errors [Ref. 22]. These remaining incompatibilities were fixed
by the second patch called the Access 2000 and SQL Server 2000 Readiness Update [Ref.
23].

In the end, we were able to modify the component and install these two patches to
get everything working in the SQL 2000 environment. The requirement for installation
of the two patches is extremely unfortunate as it complicates system requirement
validation for users. Aggravating matters, the SR-1/1A update for Office cannot be
bundled with the HFACS distribution due to Copyright. In addition, the Access/SQL
Update does not have a user friendly installation program. It requires users to manualy
unpack and copy files to program directories, making it clumsy and much less
professional in terms of ease of use. Nonetheless, the patches do provide the
functionality that Microsoft proclaims and the HFACS Connection component will work

inaSQL 2K environment if they are both properly installed.

57

H. IMPLEMENTATION - STAGE 3

At the end of stage 2, the HFACS Connection component had been tested on
severa platforms with both SQL Server engines as back-end data sources. We were
confident that it was ready to be bundled into an installable set of programs capable of
deployment on any computer running a Windows 95 or newer Microsoft operating
system. This bundle of programs would need to install our component, the FTP server,
the initialization file, either the SQL 7.0 or 2000 engine, the Access project file, and all
the associated library reference files. In addition, we desired to bundle Microsoft Access
Runtime as part of the package. Microsoft Access Runtimeis a stripped-down version of
Access 2000 that allows developers to distribute Access based solutions to users without
the requirement for Access to already be installed on the user's machine. Access Runtime
is only available as part of the Microsoft Office Developer version of Office 2000. We
realized that three setup programs would be needed: one for our component and its
associated files, one for the SQL 7.0 engine, and one for the SQL 2000 engine.

We began by creating a setup program for our HFACS component and related
files. Thefirst step was to identify libraries and files that needed to be included with our
compiled code in order for it to run. Since we had tracked program dependencies as part
of development, this was relatively easy. Next, we needed to determine where on the
users machine to ingtall the files in order for HFACS to find them at runtime. The
following matrix identifies the files and locations, less those associated with installation

of either of the two SQL engines:

Eilename Eunction Client Directorv L ocation |
comdlnl2 acx Hn\lirmmwmmmgﬁm dialon A pr\l ir‘aﬁ.gn_pa‘h
qif89 dil Hm/irwmmmmmgwﬁ A ppl iraﬁ,gn_pah
I—II:A(‘QMP The HEACS Accessclient r\rnjnr"f Apr\lir‘atinn In;th
HEACS hmp Qplm Applir‘aﬁgn_pah
HEACS Il The HEACS Caonnection component Application path
HEACSico HEACSprogram icon Aplnlir‘aﬁnn_pa‘h
HEACSIni HEACSinitiglization file Apnlication path
HEACS mdf Lnitial distribyition of the HEACS datahase A;f\;'\lir-aﬁm_ba‘h
HEACS mdf ald Back-1 jp.copy of the datahase Appliraﬁgn_pah
I—Il:A(‘Q_ImIdf Initial digtribition of the datahage log file Aplnlir‘aﬁlgn_pa‘h
HFA(‘Q_IM Idf ald | Rack-l jp.copy of thelog file Applir‘aﬁgn_pah
IHEACSETPeve | The ETD conyver Application path
MSCOMCT? acx 1 Provides ahjects for camman confralslike the statiis meter Application path
MSCOMCTL .ocx | Provides obiects for common controls like buttons and text boxes. | Application path

Figure 3.15. FileInstall Locations.
58

The Visual Basic Enterprise Edition includes a Package & Deployment Wizard
for creating Setup programs for compiled applications. Microsoft Office Developer
includes a similar Package & Deployment Wizard for creating Setup programs for custom
Access solutions. Both versions of the Wizard allow specification of file install locations
in much the same format as the table of Figure 3.15. The Developer version has the
added ability to bundle Access runtime -- which is the only way runtime can be
distributed. Thisis effectively a measure to prevent non-owners of the Developer edition
of Office from copying the runtime files and including them in their distributions. For
this reason, we used the Developer edition of the Package & Deployment Wizard for
creating our Visual Basic based setup programs.

The source code for the Setup program used by the Package & Deployment
Wizard is included with both VB Enterprise and Developer. Creation of our setup
package would require modification of the Developer version code in two ways. First, a
capability needed to be added to write changes to the hfacs.ini initialization file as part of
the program install. This was needed so that the HFACS Connection component could
determine the application path of the Access project without reliance on the Access
project to pass this information. This was a trivial matter, as al we were required to do
was add the INIFile class to the Setup program project with some simple code to write
the application path to a key as part of setup. The second modification was also trivial.
In order to include a custom icon as part of the distribution, a few lines of code had to be
added to the Setup program souce code as defined in Lynn Shanklin and Brady Ded's
article, 'Distributing Custom Icons with Your Microsoft Office 2000 Applications” [Ref.
24].

Our modified setup program compiled perfectly using the Office Developer
Package & Deployment Wizard. Installing it on several machines, however, we found
several inconsistencies associated with the different Windows operating systems. All the
previous problems identified with the SQL 2000 engine were present, as was a new bug
dealing with "Multiple System Files Out of Date" (see Microsoft Knowledge Base article
Q279764). The good news was that every deficiency we discovered was corrected if
Office Service Release 1/1a and the Access 2000 and SQL Server 2000 Readiness Update

59

were installed on the machine in the proper sequence. These findings highlighted the
importance of stressing application of these patches to Microsoft products in our fina
user documentation.

The next step dealt with creating setup files for both versions of the SQL engine.
The QL Server 2000 Desktop Engine setup program provided by Microsoft was
designed for distribution as part of a bundle. Microsoft has conveniently packaged the
required files in a directory with a customizable initialization file for setting application
specific options. The program installs with a single screen, displaying a graphical status
bar that indicates progress. All we had to do was add parameters to the initiaization file
forcing the engine to ingtall itself using mixed mode security settings. This ensures that
when the engine is installed on a computer running a Windows 2000 operating system,
the HFACS Connection component will till be able to access the engine using the
default "sa' logon with a blank password. Of course the user can change these settings
using the osgl.exe command line management tool or by upgrading to a "full" version of
Microsoft SQL server after installation.

Creating an installation setup program for the SQL 7.0 desktop engine was much
more complex. The setup program provided by Microsoft for the SQL Server 7.0 engine
is a full-fledged GUI program with multiple screens requiring the user to enter detailed
information about SQL security settings, ODBC data sources, and other information that
really requires a background in SQL server administration to understand. We hypothesize
that a user installing the desktop engine will generally be someone interested running a
standalone version of the HFACS-ME program, so we wanted MSDE to install
automatically. The solution to this problem was to create an unattended installation file,
which recorded all the "answers' to the wizard dialogs. In this manner, the setup
program could be launched from an MSDOS batch file specifying command line options
to run with the settings specified in the unattended installation file. This, however,
presented another problem. The DOS window remained open for the approximately
eight minutes it took to install MSDE without providing any feedback to the user -- just a
black screen and lots of disk activity. We wanted to create a GUI status bar screen
similar to one used by the SQL Server 2000 engine. In keeping with the desire to keep all

60

our code in Visual Basic, we pondered several possible implementation scenarios, all of
which were deemed undesirable due to the lack of free threading in VB. Since the
program would be very small, we opted for a Visual C++ implementation.
l. SUMMARY

In the end, we were able to create code that would support both versions of the
SQL engine, but maintenance of two separate installation programs was undesirable. In
addition, the SQL 7.0 and SQL 2000 engines utilize different versions of the SQLDMO
model and the related files are located in different default directories. This meant that we
would have to develop two different versions of our Access client to accommodate the
different reference file locations. Alternatively, we could programmatically manipulate
the registry to determine the locations of these SQLDMO files. These two issues made
support for both versions of the SQL server engine more trouble than it was worth. Since
we knew we could distribute the SQL Server 2000 engine with our application, we
decided to drop support for the older engine. The only drawback of the decision is that
users of full QL Server 7.0 will have to upgrade to full SQL 2000 in order to support

more than five simultaneous users.

Completion of the HFACS Connection component and the required program
setup files laid the foundation for the business-logic component development effort.
With the questions surrounding SQL Engine version problems, Visual Basic limitations,
Access compatibility issues, and operating system differences all answered, we were free
to focus on issues only related to the business-logic component. Specifically, the
database schema, placement of the components in some type of architecture, object-

oriented design, and efficient data-access methods.

61

THISPAGE INTENTIONALLY LEFT BLANK

62

V. HFACSBUSINESSCOMPONENT DEVELOPMENT

A. OVERVIEW

This chapter provides a detailed description of the design and implementation of
the HFACS business logic component. We began its development with determination of
overall system architecture via a great deal of research and experimentation in the area of
COM components. Once this architecture decision had been made, we refined our
conceptual model through interaction diagrams using the UML, prepared class diagrams,
and identified stages of spira development for the rest of our work. Great emphasis was
placed on the design of database schema and relationships. In the end, the logic for this
component was implemented within classes and Visual Basic for Applications modules,
and then encapsulated in an Access 2000 project file. The culmination of this phase was
a fully functioning beta of the new HFACS system -- ready for a thorough usability study
by an independent testing group.
B. ARCHITECTURE

Our first concern in developing the business logic component for the new HFACS
system was to determine the architecture in which we would use it. The architecture
decision was extremely important, as it would dictate many aspects of our work. The
ease of design, opportunity for code reuse, class design considerations, and scalability
would all be directly affected by this decision. We began with an investigation of the

pros and cons of each method.

A two-tier solution consists of one or more client applications connecting directly
to the SQL Server. In this arrangement, the client sends requests directly to the server
and the server handles the request by passing information directly back to the client.
Client-server workload is manipulated through use of stored procedures and/or client-side
SQL text requests. The system can be designed so that the client does most of the labor
(called a"fat client" system) or so that the server handles the bulk of the work (called "fat
server"). For example, aclient could request a copy of an entire table from the server and
then when the server provides it in the form of a recordset object, it could sort and

manipulate the data in any way required. This type of operation places the vast mgjority

63

of the work on the client computer, which is good in terms of server side performance,
but is poor with regard to the amount of network traffic it produces. Response times
associated with network bandwidth can make this type of operation seem painfully slow.
Alternatively, SQL Server stored procedures can be used to ask the server to perform
various querying operations on behalf of the client and then pass back only the desired
information. For example, instead of asking the server to send back an entire table's data,
a stored procedure could be used to get data pertaining to just one record. Use of stored
procedures in this manner reduces network traffic, but places more burden on the server.
An additiona concern in the two-tier model is the number of connections needed

between client and server. Every client needs at |east one connection.

A three-tier or ntier architecture, on the other hand, is comprised of three or more
layers of services. The client and the server are still present and make up two of the
layers, but a third layer of architecture exists for the purpose of managing connections
and requests between the client(s) and server(s). In genera, these middle tiers
encapsulate the business logic of an application. Middle tiers are exceptionally well
suited for handling requests of multiple servers. Thisis an important scalability concern.
It is very common for departments/organizations to grow and desire to create applications
which require simultaneous access to more than one database. Two-tiered solutions
would require every client to have a user ID and password for every one of these
connections. In a three-tier architecture, however, instead of every client making a
separate connection to multiple databases, the middie tier can be designed so that the
clients connect to it. Then the middle tier connects to the databases -- with only one
connection. Client computersact as if they are connecting to only one server, but via the

middle tier, they can connect to multiple servers.

Further complicating the architecture decision was our desire to use purely object-
oriented methods of programming. One of our research questions was to determine how
the linguistic discontinuity associated with relational databases could be overcome.
System architecture is directly related to the answer of this question. This is a very
complicated topic. In atwo-tier solution, many would argue that a true object oriented

design cannot be implemented. Two tier solutions rely upon stored procedures, SQL

64

syntax, triggers, and views to manipulate data. Each of these presents its own set of
limitations on data, which combine to form a somewhat constraining environment. In
order to completely overcome the limitations of relational database schema and the
aforementioned methods to manipulate them, we believe that no stored procedures or
other database server functions should be used. To accomplish thisin Visual Basic, the
client would be required to directly access tables and programmatically perform al data
manipulation. Classes would be developed for each table and each instance of a class
would require its own connection to the database. Additionaly, in a two-tier object
oriented design, these class objects would need complete copies of all table data,
resulting in an enormous network burden.

Alternatively, a three-tier object oriented solution could be implemented to
eliminate the network traffic problem. The middle tier could be placed on the same
machine or local subnet as the SQL server. This however, would still not resolve the
problem associated with each instance of an object creating it's own connection to the
L Server. To eliminate this problem, two methods are possible: 1) creating a 4th tier
to act as a layer of abstraction for the class instances to interface with the server; 2)
utilizing a transaction processing monitor capable of sharing connections. Yet, each of
these options presents still another set of unique problems. The 4tier option would
require a huge amount of programming in an area that we have no experience.
Additionally, installation programs for the components of these tiers would need to be
developed. These ingtallation programs would need the capability to install the
components on stand-alone clients running MDE, as well as, true QL Servers -- a very,
very complex task. The transaction processing monitor option faces similar installation
issues. Microsoft Transaction Server (MTS) is the Microsoft processing monitor
compatible with SQL Server 2000 and Visual Basic. Developing a COM component for
(MTS) would require programmatically configuring it for use with MSDE and SQL
Server -- another daunting task.

Clearly a three-tier solution would offer more flexibility in the long run, but our
research led us to believe that the programming overhead associated with time and

complexity made this avenue prohibitive. Nonetheless, in order to further investigate

65

how complex this endeavor would really be, and to get a feeling for the benefits it might
provide, we developed two prototypes for testing. The first prototype was a three-tier
implementation of a COM component for use with MTS. It was designed using Visual
Basic 6.0 asan Active-X DLL. An Access data project (.adp) was used as a front-end for
the component. The two-tier prototype was created using Access 2000 & VBA with a
direct connection to SQL Server. We experimented with the design for six weeks, testing
various functionalities as compared to a two-tier solution using a mix of server-side
stored procedures and client-side SQL requests. In the end, our predictions were
confirmed. The three-tier COM component was much more complex to create and
mani pul ate than the two-tier solution. We were able to successfully use it with MTS on a
true SQL Server installation, but we were not able to get it to work with MSDE. This is
not to imply that it cannot be done with MSDE, only that we could not do it in the time
available. These reasons, coupled with the fact that modifications could be made later in
the life cycle of HFACS to migrate it into a three-tier solution, led us to the selection of a
two-tiered architecture. This decision was not made without careful thought and testing.
As will be described in the remainder of this chapter, great lengths were taken in the
implementation of our two-tier solution to maximize its ability to be migrated to COM at
some point in the future and to optimize it for server-side (fat-server) data manipulation.
C. SEQUENCE DIAGRAMS

With the decision to implement a two-tier solution behind us, we were ready to
refine the conceptual model for the component in a fashion similar to that used for the
connection component. This involved creation of the Sequence diagrams for the typical
course of events for our critical use cases. The sequence diagrams that follow illustrate

the actor interactions and the operations initiated by them, as well as, their order.

66

1.

Add Factors

:Operator ‘HFACS-ME

Load_Form()

viewMishap()
displayMishap()

addFactor()
selectFactors()
updateMishap()
N [The operator™
L The operator

AN

selects the
third order
factor which
will
automatically
select the
2nd and 1st
order factors.

Figure4.1l. Add Factor Sequence Diagram.

67

2.

Add Mishap

:Operator

addMishap()

:HEFACS-ME

getParameters()

Form_Open()

next()

getParameters()

finish()

Load_Form()

addMishap()

Pra—

Figure 4.2.

Add Mishap Sequence Diagram.

68

3.

4,

Graph

:Operator

:HFACS-ME

graph Form_Load()

graph()

openForm(progress_bar)

openForm(actual_graph) I

close(progress_bar)

close()

formClose()

Figure4.3. Graph Sequence Diagram.

Edit aMishap

:Operator

:HEACS-ME

formLoad()

viewMishap()

displayMishaps()

save()

Form_Dirty()

=

Form_Close()

Figure 4.4.

Edit a Mishap Sequence Diagram.
69

5.

Edit a Factor

:Operator

Form_Load()

:HFACS-ME

viewMishap()

displayMishap()

save()

Form_Close()

Form_Dirty()

p—

Figure 4.5.

Edit a Factor Sequence Diagram.

70

6. Get Summary

Report

:Operator HEACS-ME
I Form_Load() I
summary()
Form_Open()
populateComboBoxWithAll()
update() ES—
getUpdate()
goGetRecords()
p—
IbIDoublclick()
close()
Form_Close()
Figure4.6. Summary Report Sequence Diagram.

7. Create a Report

:Operator

HEACS-ME

Form_Load()

Form_Open()

clickTypeReport()

Form_Open(waitProgressBar)

close()

p—

Form_Close(waitProgressBar)

pra—

Form_Close()

Figure4

7.

Create a Report Sequence Diagram.

71

8. Query

Our requirements specified the ability to query by a single field and by multiple
fields. We prepared our use cases to reflect this. During sequence diagram development,
we decided to combine these into a single use case by providing the ability to do both

operations from the same place.

:Operator :HEACS-ME

Form_Load()

ExpertQuery()

Form_Open()

view()

Form_Open(viewMishaps) ‘{

I done()

Form_Close()

Figure4.8. Query Sequence Diagram.

D. COLLABORATION DIAGRAMS

Analysis of our Sequence diagrams allowed us to create Collaboration diagrams
to illustrate allocation of responsibilities to objects in the system, specifically
demonstrating how they interact via messages. The diagrams that follow provided the
level of detail needed isolate the key messaging functions between objects in the

component.

72

1. Add Factors

1: Form_Load()
2: viewMishap()

—
Sperator SelectMishap
&selectFactor()
\]j: addFactor() \L 3: Form_Open()
Factors

EditMishap

6: updateMishap()

Figure4.9. Add Factors Collaboration Diagram.

2. Add Mishaps

1: addMishap()
operator —>

selectMishap

4: next()
6: finish()
3: getParameters() /
5: getParameters() 2: Form_Open()
AddMishap EditMishap
U 8: For
—>

7: updateDatabase()
Opens the
EditMish...

Figure4.10. Add Mishaps Collaboration Diagram.

73

3.

4.

5.

Graph

1: Form_Load()
2: graph(x,y)

operator

—>

graph

N: close()
8: Form_CIosex J/ 4

actualGraph

Figure4.11.

3: Form_Open()

5: Form_Close()

—

6: update()

waitProgressBar

Form_Open()

Edit aMishap

operator

1: Form_Load()

2: viewMishap()

—

Graph Collaboration Diagram.

Figure 4.12.

6: Form_CIo% 2 Form_Dirty(yr

\4: save()

Edit a Factor

1: Form_Load()
2: viewMishap()

operator

—>

selectMishap

J/B: Form_Open()

EditMishap

Edit aMishap Collaboration Diagram.

Figure 4.13.

6: Form_Close()

4: save()

74

5: Form_Dirty(q\ \J/
3:

selectMishap

Form_Open()

EditMishap

Edit a Factor Collaboration Diagram.

6. Get Summary Report

1: Form_Load() 4: Form_Open()
2: summary() 5: Form_Close()
operator ; QueryMenu] ; WaitProgressBar
7: update()

& IbIDbIClick()
iz: close()

13: Form_CIosT\() \L‘?' Form_Open()

ViewMishap Summary

11: Form_Open() U

6: populateComEoBoxWithAII()
8: getUpdate()
9: goGetRecords()

Figure4.14. Get Summary Report Collaboration Diagram.

7. Createa Report

1: Form_Load()

3: clickTypeReport()
6: close()

operator > Reports

=
2: Form_Open()
7: Form_Close()

4: Form_Open()
5: Form_Close()

waitProgressBar

Figure4.15. Create a Report Collaboration Diagram.

75

8. Query

1: Form_Load()
2: ExpertQuery()

operator — QueryMenu

4: vi
\\neW() \L 3: Form_Open()

\LG: done()
7: Form_CIose(]\

ViewMishaps ExpertQuery

5: Form_Open()

Figure4.16. Query Collaboration Diagram.

E. CLASSDIAGRAMS
Finaly, the information gleaned from the Collaboration diagrams, empowered us

with the knowledge needed to refine our conceptual model. Figure 4.17 illustrates an

intermediate level view of the key classes.

76

<<Class Module>>
ConnectionFunctions

CreateConnectiorf)

connect

<<Form>>
ExpertQuery

view mishap

Form_Close()
Form_Load()
cmdView Click()

fanb

<<Form>>
QueryMenu

changeServe
InitConnectio
getUpdateFT|
getUpdateFromD|s(<)

rem veConnectlor()
rnnn eDBTy m

0]
FrmAdJMlshap

cmdBack_Click()
cmdNext_Click()

cmdFinish Click()
cmdCodeMaintenanceClick

Form_Close()

<<Form>>
ViewMishaps

cmdPreview Click(
Form_Close()
Form_Load()

get summary

deysiw moys

<<Form>>

cbo*_Change()
cmdUpdate Click(

f

Form_Load()
cmdSummary Click()
cmdExpertQuery Click(

nuaw Aianb j

get report

<<Form>>
MainMenuL

Form_Load()
AddEditMishaps_Click(

<<Form>>
ExpertGraph
get graph

Exit_Click
Form OFen() Graph_t Cll(c)k()
Form_Close() Investlgate Click()
addFactor() 8 ry_Click()
cmdCancel Click() eport_ Cllck()
addMishap()
Form_Load() ® &
o 2)
5 = 2
o © 2
a °
<<Form>>
frmFﬁlH\m>h>nn frmSelectMishap.
cancel () cng_one__CIirg:kO lck(
CodeMaint i cmdViewMishap Clic
ngee(dintenance() edit mishap cmdAdd Click()
Form_Close() cmdKill_Click()
Form_Dirty() Form_Open()
Form_Open()
PreV|§w8
Figure 4.17.

The descriptions that follow provide abridged definitions and explanations for

respectively.

Form_Close()

Form_Load()
*_DbIClick()

<< >>
Hepon
Form_Close()

Form_Load()
selectTypeOfRepor()

cmdGraph Click(
Form_Close()

Form_Load()
o

<<Form>>
ActualGraph

cmdUpdate Click()
Form_Close()
Form_Load()
Form_Open()
togEnlarge AfterUpdatg)

chtTheGraph PointSelected)

Intermediate Class Diagram.

77

these key classes. They are provided here to document their general functionality in
prose format and provide a basis for subsequent discussion of development issues.
Detailed HFACS Business component class diagrams illustrating all methods, as well as,
complete descriptions of the actual classes the can be found at Appendices D and E,

1. Main Menu Class

<<Form>>
MainMenu

Form_Load()
AddEditMishaps_Click()
Exit_Click()
Graph_Click()
Investigate_Click()
Query_Click()
Report_Click()

Figure4.18. Main Menu Class Diagram.

This class is the main switchboard for the program. It is responsible for launching
all other processes. It is responsible to launch the add/edit mishap processes, graph
process, the investigation process, report process, and the query process. This class will
not perform any of these functions but act as a gateway to the other classes.

2. Connection Functions Class

<<Class Module>>
ConnectionFunctions

CreateConnection()
changeServer()
InitConnection()
getUpdateFTP()
getUpdateFromDisk()
removeConnection()
toggleDBType()

Figure4.19. Connection Functions Class Diagram.

This class mainly performs the database maintenance and connection to the server
functions. It contains the vast majority of the "helper” functions used by the program. It
performs the functions for connecting and disconnecting the application to a SQL server,
replacing the database via FTP and disk file, and toggling database type from military to

civilian and vice versa

78

3. Select Mishap Class

<<Form>>
frmSelectMishap

cmdDone_Click()
cmdViewMishap_Click()
cmdAdd_Click()
cmdKill_Click()
Form_Open()

Figure 4.20. Class Diagram for Select Mishap Class.

This class serves the functions to support viewing the mishaps in the database and
acts as a gateway to the add mishaps class and edit mishaps class. This class aso can
perform deletions of mishap records from the database.

4, Edit Mishap Class

<<Form>>
frmEditMishap

Cancel ()
CodeMaintenance ()
Save ()
Form_Close()
Form_Dirty()
Form_Open()
Preview()

Figure4.21. Edit Mishap Class Diagram.

This class is used to edit mishaps and add factors. If any changes occur on the
existing records, the database is updated to reflect the changes.
5. Add Mishap Class

<<Form>>
FrmAddMishap

cmdBack_Click()

cmdNext_ Click()
cmdFinish_Click()
cmdCodeMaintenance_Click()
Form_Close()

addFactor()
cmdCancel_Click()
addMishap()

Form_Load()

Figure4.22. Add Mishap Class Diagram.
79

This class, through series of questions, guides the operator in entering a new
record of mishap data into the database. This class will provide guidance and examples
when the operator seeks to input the mishap factors that pertain to the new mishap data.
Once the operator has inputted all required data, the class will update the database to
reflect the new record.

6. Expert Graph Class

<<Form>>
ExpertGraph

cmdGraph_Click()
Form_Close()

Form_Load()

Figure4.23. Expert Graph Class Diagram.

This class is used to select the X and Y axis criteria and pass the users selections
to the Actual Graph classto display the graph.
7. Actual Graph Class

<<Form>>
ActualGraph

cmdUpdate _Click()
Form_Close()

Form_Load()
Form_Open()

togEnlarge_AfterUpdate()
chtTheGraph_PointSelected()

Figure4.24. Actua Graph Class Diagram.

This class displays the graph with the user sdlected fields. Initially, graph
displayed is the result from the x and y axis values selected by the user in Expert Graph
class. Once the graph is displayed, the user can focus the graph into few items such as
arcraft type that was involved in the mishaps, or specific location of where the mishaps
occurred. The user can also to see the graph of al data (thisis the initial view). The user

can also choose to enlarge the graph picture.

80

8. Query Menu Class

<<Form>>
QueryMenu

Form_Close()
Form_Load()
cmdSummary_Click()
cmdExpertQuery_Click()

Figure4.25. Query Menu Class Diagram.

This class acts as a gateway to the expert query class, which will perform query
on multiple fields, and the summary class.
0. Summary Class

<<Form>>
Summary

cbo*_Change()
cmdUpdate_Click()
Form_Close()

Form_Load()
*_DblClick()

Figure4.26. Summary Class Diagram.

This class is used to depict the table of factor vs. mishap counts and percentages.
It alows the user to select criteria from combo boxes and fills then calculates the values
for the table when the user clicks update. When the user double clicks a label in the
table, View Mishaps class is launched which will display the mishaps that comprise the
data for the label in the summary data display.

81

10. Expert Query Class

<<Form>>
ExpertQuery

Form_Close()
Form_Load()
cmdView_Click()

Figure4.27. Expert Query Class Diagram.

This form allows the user to choose multiple criteria from a series of combo boxes
and then query the database to open the View Mishaps class and display the mishaps and
factors. When the user clicks "View", View Mishaps class is launched which will
displays the mishaps that matches the criteria established in the user selected combo
boxes.

11. View MishapsClass

<<Form>>
ViewMishaps

cmdPreview_Click(
Form_Close()
Form_Load()

Figure4.28. View Mishaps Class Diagram.

This class displays the mishap data responding from the Summary class and the

Expert Query class. The data displayed is not editable because it has read only
functionality.

12. Report Class

<<Form>>
Report

Form_Close()
Form_Load()
selectTypeOfReport()

Figure4.29. Report Class Diagram.

82

This class is the form for selecting the type of report to run. The class will display
the results that corresponds to the user’s parameter that was selected in a combo box. It
basically performs the functionality of sorting the data. For example, if the user selects
the report and the parameter selected is by year, then the data will be created in the report
and the data will be sorted by year.

F. IDENTIFICATION OF SDM STAGES

As discussed in Chapter 3, we utilized the Spiral Development Method (SDM) as
a guide to control risk throughout the component development process. During the
process of developing the class diagrams, several key issues arose which led us to our
choices for SDM design stages. Foremost of these issues was development of the
database schema. The old versions of HFACS (military and civilian) used different
schema that were not compatible in any way. In addition, we needed to coordinate with
other groups working on HFACS to develop an integrated solution that would meet
everyone's needs. We knew that in order to have data to work with while developing the
guery and graphing classes, the ability to add, edit, and delete data would need to be done
first. Similarly, security concerns needed to be ironed out prior to coding the add, edit,
and delete classes. Based on these observations we identified the following five stages of
cyclical development:

Stage 1 - Creation of Database Schema
Stage 2 - Analysis of security
Stage 3- Creation of add, edit, and delete classes
Stage 4 - Query, Graph, Reports
Stage 5 - Test
G. IMPLEMENTATION - STAGE 1

One of the goals of our design was to overhaul the database schema in the old
military and civilian HFACS systems such that a common application interface could be
developed for both types of data. This would make maintenance of the application code
much easier because, in effect, both databases would actually be one database. At the
same time, however, other groups working on the project had their own design
considerations to contend with. We began the process by refining field names for data to

generic terms compatible with both versions. For example, instead of using fieldnames
83

like "Service" for the military version and "Carrier" for commercia version, we decided
to use "Organization” -- which would apply to both types of data. Numerous changes of

this nature were made.

Our next step was to develop relationships to define the data. Structured Query
Language and relational databases are generally restrictive by nature. In any complex
project, developers face the limitations imposed by relationships every day. This is
generaly a result of the normalization and other "structural rigidities’ of relational data.
Because of these restrictions, we took great care when defining the structure of the
database tables.

Normalization consists of the standard rules of predicate calculus applied to
relationships to prevent a design that can cause repeated and inconsistent data. Poorly
designed relationships gives rise to complex SQL statements, with multiple joins,
necessary to re-mold the structure. We began by reviewing the following standard
definitions of 1st, 2nd, and 3rd normal forms and applying them to our proposed table
definitions [Ref. 30]:

First Normal Form - Removes all repeating groups of data by giving each
logical group a separate table and providing a primary key in each.

Second Normal Form - Key fields are chosen so that non-key fields
depend on all fields in the primary key.

Third Normal Form - No fields depend on other non-key fields.
The products of our review consisted of tables for the entire database in 3rd

normal form. Figure 4.29 illustrates our tables in 3rd normal form. At this point, we
entered the data into Microsoft Access usng a JET engine and conducted experiments to
determine how we could manipulate keys and relationships to provide the fastest

performance.

Aircrafit TypeModel
AircraftCakegory
AircrafkDescripkion
e thiMish thibish bi3F
MishapZlassDefinition MichapID _E FactorID Ird evelCode
MishapDate MishapID_FE. SrdLevelDesc
f— Aircraft_FE FactorDescription I ZndLevel FK
E izh Class_FK JrdlevelCade_FK
MishapTypeCode " |Tvpe PR
Mishap Ty peDefinition Location_Fk. thI2E;
Service_Fk e
ShortDescription < [2ndLevelCode
LongDescription ZndLevelDesc
UnderInvestigation 1stLevel _FK
T
= <= [15H evelCode
mﬁ ZndLevelDesc
Service

Figure4.30. HFACS Tables- 3rd Normal Form.

In general we decided to adopt third normal form for al tables with one exception
-- the "Factors' table. The "Factors' table consists of first, second, and third level factors,
which define the HFACS-ME taxonomy. In third normal form, each factor gets its own
table with its own primary key. In redlity, however, the third, second, and first level
factor combinations are each uniquely defined by the third level factor. Since the
HFACS taxonomy is well defined, it is highly unlikely that many new factors will be
added. This creates a sSituation where the factors are referred to merely for "lookup”
purposes. For performance reasons, we decided to place al factors in single table.
Similarly, in defining relationships, we chose to enforce referential integrity for
cascading deletes only between the Mishaps and Factors tables. To accommodate both
types of database (civilian and military), we added a table for "Database Type" and
placed foreign key fields in the tables where differentiation of data would be necessary.
This made it possible to select the data for the appropriate database type with only a
single extrajoin per query. Our fina agreed upon solution isillustrated in Figure 4.30.

85

tbiMishaps =" tbimishapFactors thiFactors
¢ [MishapID | % |FactarID | 7| [ardLevelCade]
__|MishapDate T |MishapID_FK | |[ardLevelDesc)
Aircraft_FF. | |Factorsummary | |[2ndLevelCode]
| |Class_F [|[3rdLevelCode_FK] | |[zndLevelDesc]
| TvpeFK | FactarDescriptian | |[1stlevelCode]
Lo akionID_Fk . [|[1stLevelDesc]
OrgID_FK —
: ShortDescripkion tbiMishapType
| |LongDescription @ |MishapTypecade
= UnderIrvestigation thiDatabaseType : MishapTwpeDefinition
DatabaseType
= Iil Dataiaselype thlaircraft
% | AircraftTvpeModel
thimMishaplLocation " |AircraftCategary
| |MishapLocationID " |AircraftDescription
I_ MishapLocation
| |DatabaseType thiMishapClass
% | MishapZlassZode
tibrgaization : MishapClassDefinition
[@lorg
I_ orghame
E DatabaseType

Figure4.31. HFACS Tables- Fina Solution.

Throughout our development, we created many very complex queries o display
datain various formats for graphing and advanced queries. Our conscious decision not to
blindly adopt third normal form did not appear to hinder usin any way.

H. IMPLEMENTATION - STAGE 2

Without a doubt, the security aspects of this project were the most difficult to
implement. To start with, we have the three modes of security used with SQL Server: 1)
NT authentication mode, 3) SQL Server mode, and 3) mixed mode. Compounding this
complexity were NTFS file and share permissions associated with Windows 2000 and
Windows NT, as well as, the complete lack of any intrinsic security in Windows
95/98/ME. Our requirements stated "access to the add/edit feature of the database must

be controlled via a password mechanism.” Follow on discussions with our sponsors

86

further refined this statement to mean that unauthorized users should not be able to add or
edit the official data in the database. Unauthorized users are further defined, as "anyone
not specificaly identified by our sponsor as authorized to make changes.” This creates a
fundamental problem. A SQL Server database file that is physically distributed to an
organization can be attached and modified by anyone with SQL Server administrative
privileges. This means that the only method to ensure unauthorized access is to maintain
a single copy of the database in one physically secured location. Users could then be
granted access using one of the modes of SQL Server security. Stated differently, the
only way to secure this type of database is not to physically distribute it.

Since this was not feasible due to the requirement for connectionless operation,
the next best alternative was to make it difficult to change the data. To accomplish this,
NTFS permissions and SQL Server permissions were not enough, as Windows 95/98/ME
users with a default installation of MSDE using the "sa" login and a blank password (the
system defaults) can change the data in the database. The solution was to create a third
level of security within HFACS -- its own security module. To do this, a data store of
user IDs and Passwords must be accessible during logon to vaidate the users as
administrators. There are severa complex methods available for this type of
implementation. Our recommendation for future efforts would be to utilize a secure key
server. For our purposes, however, we chose to store the passwords in a hidden table in a
separate JET based Accessfile. This separate database can be password protected and the
password can be hard-coded into the compiled HFACS application to alow it access to
the data without giving users the ability to see the password. The obvious problem with
thisis that if the password is compromised, there is no way to change it. A key server
would solve this dilemma, as it would provide a single point for password validation and
passwords could be changed if they were compromised. It would also, however, require

network access of some kind.

In the end, our security arrangement is good enough to keep people from
accidentally accessing the add/edit features of the database. A determined person with
malicious intent could gain access and change the data. As it stands, the most complex
security is provided by the Windows 2000 platform. In order for Windows 2000 users to

87

access the administrative features of the database, they must be a Windows 2000 system
administrator, a SQL server administrator, and an HFACS administrator. All these
checks are programmatically verified by our business logic component every time a user
attempts to access the administrative features of the database. On Windows 95/98/ME
with a default installation of MSDE, however, there is only one security check -- for
HFACS administration privileges.
l. IMPLEMENTATION - STAGE 3

The first classes that we implemented in code were the add, edit, and delete
classes. This was the logical progression for our SDM as these functions needed to be
operable before we could build the query and graph classes. As described previously, the
add, edit, and delete classes posed special security problems. Adding to the complexity
was the requirement for users to initiate an "investigation® of a new mishap.
Investigation of a new mishap is really the same operation as adding records to the
mishap and factors tables, but we could not allow "normal™ users database "write" access
to these tables -- only an Administrator is authorized to add mishaps to the officia
database. In addition, if a normal user were able to add records to the database, any
database replacement operation (via FTP or disk as described in Chapter 3) would
overwrite their input. A method was needed to input persistent data that would not be

overwritten by a database update (replacement operation).

The solution to this problem came in the form of a separate Access database.
Each HFACS instalation includes a separate JET based database (Investigate.mdb) that
provides the local functionality for adding, editing, and deleting mishaps for investigation

pUrpOSes.

By implementing our solution in this fashion, all users can initiate an
investigation without altering the official datain the SQL Server database. Additionally,
a database replacement operation will not overwrite their saved investigations. The
Investigate.mdb module uses the same program logic as the SQL Server version of the
database and can be launched from within the main HFACS application without the user
even realizing that they are using an entirely separate program. This solution has the
added benefit of the capability to operate as its own standalone program. This is

88

pertinent because in the event of the implementation of a key server solution at some
point in the future, users disconnected from the Internet will still have the capability to
initiate investigations -- an interesting and viable option to alleviate some of the security

concerns.

Two other interesting discoveries were made during this phase. First, the
Investigate.mdb database had to have a capability to determine what type of HFACS
implementation launched it. For example, if the user of the civilian configuration of the
database launched the investigation module, then the investigation module needed to run
with civilian options specified for inputting and editing data. The proved a somewhat
difficult problem, as we desired to maintain the ability for the Investigate.mdb program to
operate in standalone mode. For severa days we experimented with command line
arguments without success. The solution was to add the "iniFile" class from the HFACS
connection component to this standalone database. In this manner, the Investigate.mdb
program is capable of reading from the HFACS.ini file to determine what mode to open
in. If the HFACS.ini file is not present, the default setting of "military” is used. This

served as a testament to the code reusability of or our project to this point.

A second and unrelated, yet interesting discovery, dealt with the usability of the
general HFACS graphical interface. A limitation of Visual Basic and Access is its
inability to automatically resize controls on a form (in a class) when the user stretches a
window. This may seem trivial, but in a data aware application that uses grid controls,
anyone using a monitor with resolution of 1024 X 768 or greater is stuck looking at a
small box in the middle of the screen that is barely legible. This problem quickly made
itself apparent during the development of the add/edit and delete classes. A search of the
Internet yielded the code for a form resizing class from Database Creations,
Incorporated. Utilizing this class we were able to provide support for dynamic resizing

of forms based on the user's screen resolution, greatly enhancing the usability of our

program.

89

J. IMPLEMENTATION - STAGE 4
The queries, graphs, and reports classes were the final code development effort
for our implementation. The query classes were very straightforward and posed no

significant problems. Graphing and reports on the other hand, were a specia challenge.

I'll describe the graphing issues first. As alluded to in Chapter 2, Access used to
support only one database engine -- JET. When support was added for SQL Server, many
of the RAD features associated with Access were not supported. Graphing is one such
example. Access does not provide the capability to pass input parameters to a bound
graph control when SQL Server is used as the data engine for an Access project. To
circumvent this problem, a Visual Basic Active-X control was utilized. Visual Basic 6.0
Enterprise Edition provides a redistributable Active-X chart library called
MSChart20.ocx. By including this library as a reference within Access, al the methods
and properties became available and an impressive set of charting options presented
itself. This control is not for the weak at heart. It isthe largest Active-X control we have
ever used and documentation for it is confusing. To populate a chart requires creation of
a separate "datagrid” object. In order to use it you must programmatically define every
position in the grid including labels, font sizes, orientations, styles, and so on. Further
complicating matters, this Active-X add-in does not fully support Access. It was designed
for true Visual Basic and not VBA. Access provides no means to manipulate the
Windows clipboard objects, which are integral for serding images of MS Chart graphs to
an attached printer. To circumvent this, another dynamic link library was developed
using pure Visual Basic. Its sole purpose is to provide explicit print support to HFACS
for the Windows clipboard (HFACSClipboard.dil).

Just after getting the charts to work with sample data, we made our next
unforeseen discovery -- SQL Server does not provide embedded support for cross-tab
gueries. A cross-tab query is a spreadsheet-like summary of the things specified by the
row header and column headers that is created from a table or query -- but, only when
using the JET database engine. This type of query presents summary data in a
spreadsheet-like format created from the fields that you specify. In this speciaized

query, row and column totals can be generated on the fly. For example if we wanted to

90

create a query that displays the type of aircraft field as the row heading and the third level
mishap factors as column headings, with each cell containing the total count of mishaps
for each type of aircraft with that factor, we could do it. Figure 4.31 illustrates some

sample output of such a query.

Aircraft_FK | ADA | ATT | COM
Ad
AVE
C12
130
(2
(9
EZ

oo oo o oo
M= O = — ka2
o Rt e 5 N == R w R

Figure4.32. Example Crosstab Query.

Thiskind of query isideal for populating datagrids for MS Chart controls, as well
as, for tabulating reports. Unfortunately, and as unbelievable as we found this to be, SQL
Server cannot create these types of queries. Weeks were spent trying to circumvent this
problem. Luckily, we discovered a R(eplacement) for the A(ccess) C(ross-tab) query.
RAC is an application that runs on SQL Server and produces two-dimensional cross-tab
reports. It was designed by Seve Dassin and was included in HFACS with his
permission [Ref. 31]. RAC has various options that make it possible to enhance the
traditionad Access-JET cross-tab functionality by providing additional capabilities over
thosein Access. RAC has a number of report like format capabilities that enhance the
appearance of table data. In addition to producing cross-tab reports, RAC can be used to
transpose fields, split delimited strings and create delimited strings. RAC is written in
transact-SQL exclusively for SQL Server version 7.0 and above. A set oriented approach
is employed in most places and RAC does NOT use any cursors. RAC can accommodate
any level of server and was so easy to use that we were able to create cross-tabs and
reports with it in minutes. We cannot thank Steve Dassin enough for this contribution.
Prior to implementing RAC, our graph and report queries were so complex thet they took

3 - 5 minutes to return aresult on a dual-processor Pentium 111 550 server.

91

Our last great challenge dealt with report generation. We feel that Access has
never offered seamless support for reports. Even today the entire report generation
interface in Access is noticeably disconnected from the rest of the program. Projects
utilizing a SQL Server engine compound the adverse effects of this discontinuity. In
order to create the types of reports we desired, support for specifying control data sources
(mapping textboxes to table fields) needed to be assigned at runtime -- after the program
was compiled. This proved extremely troublesome and we were never able to get it to
work properly. On forms, this type of runtime change is smple. Instead, we fell back on
the power of Steve Dassin's RAC and some extremely complicated transact-SQL to
generate the desired output.

K. IMPLEMENTATION - STAGE 5

Testing the newly created HFACS business logic component and its related
components (Investigate.mdb and HFACSClipboard.dll) began with small-scale tests on
the Windows 2000 and Windows 98 platforms.

1 Windows 98 Tests

On systems with full Access 2000 or newer installed, running Office Service
Release 1/1a, we found no deficiencies. The same was true of systems that utilized the
runtime version of Access provided by our program. We did make some interesting

discoveries in terms of usability, however.

First, we discovered an issue with how Windows 98 configurations connect to
other Windows 98 machines on a network. When we tried to connect a Windows 98
computer running HFACS to another Windows 98 computer running HFACS, it would
nott work. But, in a similar configuration on the Windows 2000 O/S, it would work. As
it turns out, this behavior is by dsign. Windows 2000 will default to a network
connection between client and server on the same network subnet using Named Pipes to
connect. This requires no additional configuration. Windows 95/98/ME computers,
however, do not support Named Pipes. For this reason, TCP/IP connections must be
used. A TCP/IP connection requires a system Data Source Name (DSN) to be built.
Once a system DSN was built, we had no problem connecting. See the Windows
95/98/ME help documentation for detailed instructions on how to build a system DSN.

92

Second, we found that print preview support for reports in Access requires that a
default printer be installed. We realized that to actually print a report required a printer,
but we had not realized that previewing a report required one. This is caused by the
requirement for printer specific data in order for Access to generate a What You See Is
What You Get (WYSIWYG) preview. We added some error handling to prevent the
runtime version of Access from crashing when users without a printer attempt to preview
reports. Incidentally, a printer does not actually have to be connected, just installed. We
"tricked" severa of our Windows computers by installing printer drivers for printers that
really did not exist -- previewing reports worked fine.

2. Windows 2000 Tests

Windows 2000 installations exhibited the same problems as Window 9X systems
in terms of report compatibility with a default printer. In general, Windows 2000 installs
proved significantly more difficult than those on Windows 9X -- the NTFS file system
was extremely troublesome to manipulate. Our application would only install to the
profile of the administrator performing the instalation. Through much experimentation,
we determined that to configure HFACS for use by other than system administrators
required the following steps:

Using the same administrator account that was used to perform the
HFACS installation, the program must be run for the first time by clicking
Start -> Programs -> HFACS-ME. When HFACS runs for the first time it
performs the actual installation of the HFACS database by attaching it to
the SQL server engine that is running on the same machine. HFACS must
be successfully connected to the SQL engine at least one time using an
administrator account before any further configuration is attempted. A
successful logon indicates that the database was properly attached to the
SQL server engine and that it can be shared for use by others. If this step
is not performed prior to giving users with other than administrator rights
access to the program, they will not be able to launch the program as they
will not have sufficient permissions to attach the database data files
(hfacsmdf & hfacs log.ldf) to the engine.

Next, a copy of the folder containing the shortcut to the HFACS-ME
program must be pasted from the administrator profile to the All Users
profile. This places a program group on the start menu for all users of the
machine.

Finally, file permissions for all users that will require access to HFACS
must be assigned to the HFACS program directory and the Visual Basic

93

virtual machine library. Assuming a default installation and a normal
domain structure these files are located in the following directories:

C:\Program Files\HFACS (Give Modify permissiors to Domain
Users for the entire subdirectory).

C:\Winnt\System32\msvbvme60.dll (Give Everyone permissions to
Read & Execute just thisfile).

The actual permissions will vary from computer to computer and domain to
domain, depending on the configuration settings of the LAN. Additionally, on computers
running Windows 2000 Professional that have Visual Basic 6.0 installed, users should be
made members of the "Power Users' built-in group in order to access HFACS.

94

V. CONCLUSIONSAND RECOMMENDATIONS

A. CONCLUSIONS

A well designed object-oriented system is one in which responsibilities are
allocated to classes of objects. Proper partitioning of these objects dictates a well thought
out distribution of responsibilities among subsystems. This type of system is easier to
develop, smpler to enhance, and more flexible than traditional procedural code. This
thesis described meticulous methods of software reengineering throughout the HFACS
development processin order to capitalize on the benefits that thistype of object-oriented
methodology has to offer. Through our 11-month research effort, we have come to the

following conclusions with respect to our research questions:

How can a Microsoft Access based implementation provide multi-user access
to the same database in a client-server environment while ensuring the ability to

scaleto alarge number (potentially thousands) of users?

Our experiments with the JET and the SQL Server data engines clearly
demonstrated that JET was not capable of true multi- user access for more than a handful
of simultaneous users. The JET engine is merely a file-server and cannot perform server-
side data manipulation. The only way that Access 2000 could provide the scalability
capable of meeting our requirements was to use it in the role of a client "shell” in
conjunction with a data engine other than JET. In this manner, the functionality of a
robust data engine capable of scaling to large numbers of simultaneous users, with
support for replication, server-side querying, and automation could be implemented. Our
review of commercial products demonstrated that several databases offer this type of
functionality, but our desire to keep our solution Microsoft based, as well as, SQL
Server's royalty free distribution policy for the Microsoft Data Engine / SQL Server
Desktop Engine, made it the logical choice. Use of the SQL data engine solved the

problem of multi-user, client-server, development when using Access as a client.

95

How can the linguistic discontinuity associated with object-oriented concepts
and relational databases be overcome when limited by requirements to use certain

types of softwar e implementations (e.g. a Microsoft Access based solution)?

Linguistic discontinuity refers to the procedural style limitations associated with
ANSI SQL and relational databases in general. As discussed in Chapter 4, system
architecture is directly related to the answer of this question. In order to completely
overcome the limitations of relational database schema, we believe that no stored
procedures or other database server functions (e.g., triggers, views, proprietary engine
capabilities, etc.), should be used. To facilitate this, some type of software middle-tier
must be developed. This creates many complex scenarios associated with the number of
connections between instances of objects and, as an organization grows, with the number
of databases that clients have to connect to. Additionally, the amount of knowledge
needed to "add-in" a middle-tier of software associated with a specific vendor's product
can prove to be immense. We found that use of Microsoft Access was not the issue when
making our decisions related to system architecture for overcoming this intrinsic
linguistic discontinuity. Instead, the most significant issue was related to our requirement
for HFACS to operate as a stand-alone program using its own data engine in a nor
networked environment.

In our experiments, we were unable to effectively use a transaction monitor
(MTS) with MSDE. This proved prohibitive in terms of athree or more level design.
Without the ability to use MTS with MSDE, we could not programmatically create an
environment where HFACS was able to connect to the local instance of the database
engine through a completely encapsulated and totally object-oriented business logic
component. We were, however, able to successfully implement a prototype business
logic component with Access, MTS and the Enterprise Edition of SQL Server. This
demonstrated that if the need arises for HFACS to be migrated to a thr ee-tier architecture
in support of large enterprise level operation in the future, a business logic component for
the middle-tier can be created to do it. Armed with this knowledge, we constructed our
two-tier solution to maximize its ability to be migrated to COM or DCOM supporting a

middle-tier of business logic at some point in the future. This was accomplished by

96

placing great emphasis on object-oriented methods using classes, VBA modules, and use
of unbound controls in our Access based business logic component. Use of unbound
controls greatly increases opportunity for future code reuse by eliminating reuse issues
associated with directly linking "visually designed" controls on Access forms to tables in
the data engine.

The current military and civilian systems provide similar functionality, but
use different database schema. How can a common interface be developed for both

types of data?

As it turns out, we were able to easily identify changes in the taxonomy of our
tables to make schema conventions applicable to both civilian and military data. The
data manipulation is the same. In the future, this will most likely not be the case. The
life of a database is really comprised of many small development cycles. If the need
arises to design new data s$ructures, our HFACS system can be migrated along two
separate development paths. Until that time, however, our solution provides a single
code base. This removes layers of complexity in terms of maintenance and design time.
We strongly recommend that any follow on development cycles continue to implement
methods which harmonize both versions of the program into a single code base for as
long asisfeasible. To summarize, the solution to this research question was not to create

a common interface, but to create common data schema.

How should database schema be changed to provide the best performance,

scalability, and opportunity for code re-use?

In conjunction with our changes to streamline both military and civilian data into
common fields, we made two decisions that we feel improved the performance of our

database, without adverse impact on the ability to be scaled.

First, our decision not to enforce referential integrity (cascading deletes) except in
one instance makes our database much easier to adapt to a completely object-oriented
three-tier architecture later in itslife cycle. What we are specifically referring to here are
the problems that cascading deletes can cause if, in the future, it is desired to manipulate
the HFACS database to completely object oriented code (without stored procedures,

97

triggers, etc.). Relationships enforcing cascading deletes can limit attempts to create a
completely object-oriented middle tier while continuing to provide simultaneous support
for older, two-tier versions of the program. Thiswill most likely be the case. We believe
that if an implementation of this type is ever developed, it will no doubt only be used on
machines running true SQL Server. Computers running MSDE will probably still rely on
the two-tier architecture as a result of the MTS add-in problems previously described.
Whatever the case, any new development of this nature will be an extremely complex
programming initiative. Our conscious effort to limit cascading deletes to the single

Mishaps-Factors relationship should help ease that burden.

The second schema change we believe improved the performance of HFACS was
to incorporate al three levels of mishap factors into a single lookup table. As described
in Chapter 4, there are only 33 third level factors. Each third level factor really defines
the second and third level factors. The decision to treat these relationships as a single

lookup table made queries less complex in the vast majority of our stored procedures.

In the past, Microsoft has deployed new versions of Microsoft Access and
Visual Basic that were not (fully) backwards compatible with previous versions.
This caused great discontent among users of applications designed to run under the
older versions of these programs. How can our systems be designed to isolate them
from problems associated with new versions of Microsoft Access? Specifically, the
pending release of Microsoft Office XP, Microsoft Office 2002 and Microsoft Visual
Basic.NET?

We feedl that second to our investigation into use of the SQL Server 2000 engine to
house our data, this was the most important area of our research. As evident from the
incompatibilities we found in attempts to upsize Access 97 databases to SQL Server 7.0
and subsequent attempts to migrate from the SQL Server 7.0 format to that of SQL Server
2000, changes in Microsoft technologies are the greatest threat to the continued operation
of our program. For these reasons we attempted to utilize as many non version-specific

aspects of Access that we could.

98

To begin with, we chose data access technologies, like ADO, that Microsoft
recommends to help ensure future product compatibility. In fact, our HFACS connection
component first tries to make its connections using SQLDMO and if thisfails, it switches
to ADO. This redundancy greatly improves its ability to operate in severa different
environments. Next, we implemented progranming methods that Microsoft
recommended for compatibility with the next generation of Visual Basic (VB.NET).
Third, we inveded in the Developer editions of Microsoft Office which allow royalty free
distribution of runtime Access. In this manner, even three years from now, when the vast
majority of Office platforms will be running Office 200X, our installation program will
still be able to install a version of Access runtime that is compatible with our current
version of HFACS -- in amanner that is nearly invisible to the user. Similarly, use of the
MSDE ensures that a compatible data engine will be available. Finaly, wherever
possible, we tried to encapsulate program code outside of Access using completely
object-oriented code. To this end, we created our own stand-alone connection
component, completely isolated from Access specific connection operations. We
provided our own FTP server, our own clipboard printing dynamic link library, our own
password and security features, and our own initiaization file for storing persistent data.
Furthermore, for graphing operations, we used the Visual Basic 6.0 Enterprise Edition's
MSChart Active-X library -- which, unlike the internal Access 2000 charting objects is
separately compiled and operates outside of Access It is our intent that these measures
provide the isolation from incompatibility associated with technology changes for at least

five years.

What new features should be implemented to make the information systems

mor e user interactive and user friendly?

Severa changes were made to improve the usability of HFACS. The following
list summarizes what we feel were the most dramatic:

Support for dynamic screen resizing based upon the user's video
resolution. By providing this support, the HFACS user interface can scale
to different sizes for users with different size video monitors. This grestly
improves the legibility of form data on all platforms.

99

Elimination of separate menu options for query of data by a single or
multiple fields. In the old version of HFACS, there were separate options
for querying the database by single or multiple fields, this was due to the
inability to effectively add "All" as a choice in queries. This limitation
was overcome in the new verson and we fed a great amount of
redundancy in the user interface was removed.

Similarly, the old verson of HFACS provided separate menus for query
by factor and for querying by summary of factors. We found this
redundant and designed the factor summary so that individual text boxes
on the summary form can be double-clicked to view detailed data
pertaining to the mishaps

Graph support in the old program consisted of only one type of 3D graph.
This severely limited the usefulness of graphs as plots of large amounts of
data were largely unreadable. The new version of HFACS has a much
more robust graphing interface with support for 4 different style graphs,
2D & 3D representation, transposition of axes, stacking of data series,
rotation of 3D graphs, and other improvements.

B. RECOMMENDATIONS

As dready discussed, we recommend further investigation of a middle-tier of
software to support HFACS for use with Enterprise level SQL Server installations. Next,
when Visual Basic .NET becomes widely available, we recommend investigation of
improvements in the code base to port our existing code to its format. We believe this
will significantly enhance the longevity of HFACS in terms of compatibility with newer
versions of Microsoft products. Additionally, the following areas are good candidates for

further research:

Migration of our instalation program from Access 2000 SR1 Runtimeto
Access XP Runtime This will eliminate the need for al Office service
packs prior to installation of our program -- greatly improving ease of
installation. Access XP Runtime is available only as part of the Office XP
Developer Edition (retail ~$799).

Development of an Active X add-in to provide more robust report
capabilities. A drawback of using Access reports is that they can only be
previewed if a default printer has been specified in Windows To
circumvent this problem, an Active-X add-in should be developed to
provide report preview functionality.

The current version of HFACS uses database replacement as the means to
update the official HFACS data. Research should be conducted into
methods to update the existing data in the distributed instances of MSDE
using replication, rather than database replacement. Replacement

100

HFACS.mdf and HFACAS log.ldf files can take up to an hour to
download via FTP, whereas replication would take considerably less time
as it only needs to add new and update the changed records -- instead of
replacing them all.

Investigation into the implementation of a key server to provide added
security for add/edit operations should be conducted. The current User ID
and Password files are stored in a hidden table in the Investigate.mdb file.
Asaresult, every client has its own set of user IDs and Passwords. A key
server would allow this data to be stored in a single location for all clients.

Automated configuration of NTFS permissions. Installation of HFACS on
Windows 2000 systems using NTFS requires manual configuration of the
program after installation in order to enable it for use by "domain users.”

Automated configuration is desirable, but will be considerably difficult to
implement. It would require automated detection of domain names and
automated configuration of user accounts with reference to security groups
and file permissions.

C. SUMMARY

Throughout this thesis, we have discussed many of the different alternatives
considered in the development of the new HFACS client/server system. Techniques were
described to provide sound documentation of our research, process logic, and
implementation decisions. We believe that our solution provides the best mix of
performance, scalability, and compatibility to meet the requirements of our sponsor.
From this stage, HFACS is ready for independent usability study, fielding, and follow-on
development cycles to add more functionality. We hope that the code that we worked so
hard to develop will not be the first code that will need modification when new
technologies become available -- we don't think it will. Nonetheless, in the event that it
does, the meticulous software engineering described in this thesis should provide sound

background for future changes, as well as, ample opportunity for code reuse.

101

THISPAGE INTENTIONALLY LEFT BLANK

102

APPENDIX A. CRC CARDSDEVELOPED FOR HFASC-ME

CRC cards developed for HFACS-ME are shown below.

A. CONNECTION COMPONENT CRC CARDS

HFACS Connection
Responsibilities: Other Classes:
*Provideinterfaceto all MSDE
other classes and all INIFile
program functionality DiskUpdate
FTPUpdate
Logon
MSDE
Responsibilities: Other Classes:
«Start Server Logon
*Stop Server INIFile
*Attach Database File
*Drop Database File

103

Logon

Responsibilities: Other Classes:
L. og onto a specific MSDE
instance of SQL server INIFile
INIFile

Responsibilities: Other Classes:

*Read from an INI file Logon

*Writeto an INI file

DiskUpdate

Responsibilities: Other Classes.
*Update database froma Logon

file on disk/network INIFile

MSDE

104

FTPUpdate

Responsibilities: Other Classes.
*Update database froma Logon
file downloaded viaFTP INIFile

MSDE
FTP
Responsihilities: Other Classes:
*Perform internet FTP FTPUpdate
functions

B. BUSINESSLOGIC COMPONENTS CRC CARDS

Aircraft

Responsihilities: Other Classes:
«Table manipulation for Append
tblAircraft Delete

Find

105

Database Type

Responsihilities. Other Classes.
«Table manipulationfor Append
tbl DatabaseType Delete

Find
Factors
Responsibilities: Other Classes:
«Table manipulation for Append
tbl Factors Delete

Find
Mishap Class
Responsibilities: Other Classes.
«Table manipulation for Append
tblMishapClass Delete

Find

106

Mishap Factors

Responsihilities. Other Classes.
«Table manipulationfor Append
tblMishapFactors Delete

Find
Mishap Location
Responsibilities: Other Classes:
«Table manipulation for Append
tblMishapL ocation Delete

Find
Mishaps
Responsibilities: Other Classes.
«Table manipulation for Append
tblMishaps Delete

Find

107

Mishap Type

Responsihilities. Other Classes.
«Table manipulationfor Append
tblMishapType Delete
Find
Organization

Responsibilities:

Other Classes:

«Table manipulation for Append
tbl Organization Delete
Find
Query Base Class
Responsibilities: Other Classes:
«Base Class for SQL Append
guery operations Delete
Find

108

Append

Responsibilities: Other Classes:
oInterface to base class for Query Base
append query operations Class
Delete
Responsihilities: Other Classes:
eInterface to base classfor Query Base
Delete query operations Class
Find
Responsibilities: Other Classes:
oInterface to base classfor Query Base
Find query operations Class

109

THISPAGE INTENTIONALLY LEFT BLANK

110

APPENDIX B. CLASSDIAGRAMS
A.

FACSDLL CLASSDIAGRAM

| ~——

<dnplmens>

Fam Garoasf

o Loz

B. HFACSFTP.EXE

CLASS

111

DIAGRAM

112

APPENDIX C. DESCRIPTION OF CLASSES

A. HFACS CONNECTION CLASS

<<Class Module>> *readINIFiIe()

s iTypeLogonConstants:integer fg<<Let>> User()
1% sUser : String fj<<Get>> User()

=# sPassword : String =<<Let>> Password()

=¥ sSvrName : String Sg<<Get>> Password()

™ sMDEName String *<<Let>> ServerName()

5* sDBName : String f§<<Get>> ServerName()

5# sinstDirectory : String t«'-et» DatabaseFileName()
5 sAutomaticLogon : String ¥<<Get>> DatabaseFileName()
s sFirstRunCheck : String “W<<Let>> DatabaseName()

s# sSNTAuth : String §§<<Get>> DatabaseName()

Sa<<Let>> AppPath()
<<Get>> AppPath()
<<Let>> AutomaticLogon()
<<Get>> AutomaticLogon()
<<Let>> FirstRunCheck()
#E<<Get>> FirstRunCheck()

w# sTypeDB : String
s sTheConnectionString : String

Class_Initialize()
S Init()

wdoComnect() R<<Let>> UseNTAuth()
createConnectionString() <<Get>> UseNTAuth()

: g:igpgzzg-irsi(()) *<<Let>> TypeDatabase()
getpaat !‘<<Get>> TypeDatabase()
writeINIFile () '

*<<Get>> ConnectionString()

FigureC.1. Class Diagram for HFACS Connection.

1. Class Description

This class is the controller class for the entire component. It is the only class with
public members accessible from outside of the component. Nothing can be manipulated
without creating an instance of this class and using its methods to indirectly utilize the
functionality of the other classes.

2. Data Member Description
iTypel ogonConstants--Enumerations for prompt/no-prompt functions in integer.

sUser--The user ID in string type.
sPasswor d-- The user password in string type.
sSvrName--The name of the MSDE or SQL Server in string type.

sM DFName--The name of the .mdf file containing the database in string type.

113

sDBName--The name of the database in string type.
sinstDirectory--The application path in string type.
sAutomaticL ogon--Toggle to log on with/without prompt in string type.

sFirstRunCheck--Toggle for determining if this is the first run after an update in
string type.

SNTAuth--Toggle for determining if NT authentication should be used for logon
attempts in string type.

sTypeDB--The type of DB this program will represent (mil, civilian, or both) in
string type.
sTheConnectionString--Variable to hold the value of the current

connectionstring in string type.

3. Method Description
Class_Initialize() — Default no-argument constructor (initialize event).

init() --1f an instance of a class is created using the psuedo-constructors from the
Constructors.bas module, this function is caled to pass initial values, thereby mimicking
the behavior of a constructor with arguments. Passed in values are all required, but the
Constructors.New_HFACSConnection() function automatically sets passed-in values to
global variable values if they are left blank.

doConnect()--This procedure will make a connection to a database server based
on the value of iTypeLogonin. If this parameter is left blank, the class determines the
appropriate type of logon to perform. This function also detects if it is the first time
HFACS has been run and displays the frmWelcome.frm as appropriate. After a
successful logon, it sets the .ini value indicating afirst run to "F."

createConnectionString()--This procedure updates the value of the global
variable for the connection string that will be used for al ADO connections
(hfacsmain.gTheConnectionString). It determines f the string should use NT
authentication or regular SQL based on the global variable gStrNTauth.

114

getUpdateFTP()--This function creates an instance of the UpdateController class,

providing access to FTP updates.

getUpdateDisk()--This function creates an instance of the UpdateController

class, providing access to update from disk functionality.

writel NIFile()--This function creates an instance of the INIFileController class,
providing methods to write to the HFACS.ini file.

readI NI File()--This function creates an instance of the INIFileController class,
providing methods to read from the HFACS.ini file.

B. ODBLOGON CLASS

<<Form>>
frmODBLogon

%bWarningFlag : Boolean

=¥ chkUseNTAuth_Click()
FcmdCancel Click()

FigureC.2. Class Diagram for ODBLogon.

1 Class Description

This class is responsible for a prompted logon. We provide the capability to
guery a user for logon parameters and test their validity against a given instance of a SQL
Server.

2. Data Member Description

bWarningFlag-- Warning flag indicating that the database needs to be installed

on the loca server in Boolean.

115

3. Method Description

chkUseNTAuth_Click()--This sub updates form properties when the user clicks
the "Use NT Authentication" check box. It "gray’s out" the username and password text
boxes and makes them unavailable for update.

cmdCancel_Click()--This sub closes the form.

cmdOKk_Click()--This sub combines the functionality of testing the connection
with the user supplied parameters and, if the parameters are valid, updating the pertinent
global variables to enable other component class instances to function (e.g. to update the
ini file with new settings).

cmdTest_Click()--This sub cals the testNewConn() function and returns an
appropriate message to the user.

Form_L oad(()--This sub sets the states of the form controls (visible/ not visible
and enabled/ disabled) based upon current global variable settings.

testNewConn()--This sub tests the validity of the user specified connection
values by attempting to start and connect to the server. Upon successful connection to
the server specified, it verifies existence of the HFACS database on that server.
C. UPDATECONTROLLER CLASS

<<Class Modul...

UpdateController

%" getUpdate()
%& getUpdateDisk()

FigureC.3. Class Diagram for UpdateController Class.

1 Class Description

This class is the controller class for the cFTP class, the FTP form
(frmFTPUpdate), and the common dialog control for reading an update from a disk.

2. Data Member Description

None.

116

3. Method Description

getUpdate()--This function initiates the FTP update session by creating an
instance of frmFtpUpdate which actually performs the download and update.

getUpdateDisk()--This function displays the "Open" didog box from the
Microsoft Windows Common Controls 6.0 allowing the user to identify a path on a
disk/network share where the HFACS.mdf/_log.ldf update files reside. It then copies the
files to the application path on the loca machine and instantiates an instance of
frmDiskUpdate to install them.
D. DISK UPDATE CLASS

<<Form>>

frmDiskUpdate

T;‘ performDiskUpdate()

FigureC.4. Class Diagram for Disk Update Class.

1 Class Description

This class is responsible for performing an update of the HFACS database from a
disk/network share.

2. Data Member Description

None

3. Method Description

performDiskUpdate()--This function performs the actual update, updating the

form as it progresses.

117

E. FTPUPDATE CLASS

<<Form>>
frmFtpUpdate

% sTempJustTheFileName : String

F cmdCancel_Click()
: ¥ Form_Load()

¥ cmdConnect_Click()
%‘ GotFileDoNext()
%ﬁ GotFileLast()
=% cmdDisconnect_Click()
' EnableControls()
' Form_Unload()

FigureC.5. Class Diagram for FTPUpdate Class.
1 Class Description

This class is responsible for performing an update of the HFACS database via
FTP. This class uses the FTPServer.exe server and the CallbackCls.cls to receive status
messages from the HFACS FTP server. The FTP server (HFACSFTP.exe) provides the
functions needed to get FTP updates. These functions and their associated classes were
removed from this component and compiled separately in order to work around the
inability of Visual Basic to provide support for free threading. By placing the FTP
functionality in a separately compiled executable, it can run in it's own process, which
allows screen updates during long FTP downloads.

2. Data Member Description

STempJustTheFileName-- A temp string variable to simplify string
manipulation when determining paths on the FTP server and for download locations.

3. Method Description

cmdCancel_Click()--This sub closes the form.

Form_L oad()--This sub resets flags when the form is opened.

cmdConnect_Click()--This sub verifies that the FTP is being performed on a
local server and intiates the FTP connection by instantiating an FTP server object. It then
downloads the first new database file (HFACS.mdf) to the application path. When

118

download of the first file is complete, the CallbackCls interface is notified by the FTP
server, which in turn executes the download of the next file via the GotFileDoNext() sub.

GotFileDoNext()--This sub downloads the second new database file
(HFACS log.ldf) to the application path. When download of the file is complete, the
CallbackCls interface is notified by the FTP server, which in turn executes the installation
of the 2 files via the GotFilelast() sub.

GotFileL ast()--This sub performs the actual update, updating the form to show
status as it progresses.

cmdDisconnect_Click()--This sub performs disconnect from the FTP server
when it is enabled. It is not enabled except during devel opment.

EnableControls()--This sub performs dynamically enables/disbles buttons on the
form based upon the connection state of the FTP server.

Form_Unload()--This sub performs cleanup operations, ensuring al objects are
destroyed when the form is closed.
F. MSDE CLASS

<<Class Module>>
MSDE

& sUser: String

= sPassword : String

=" sSvrName : String

2 sMDFName: String

2 SDBName: String

=* sInstDirectory : String

= sAutomaticLogon : String
= SFirstRunCheck : String
s SNTAuth : String
sTypeDB : String

=i Class_lInitialize()
Init()
startMSDE()
copyMDF()
dropDB()
databaseExists()
StartAndCopy()
restoreOIdDB ()
restartMSDE ()

FigureC.6. Class Diagram for MSDE Class.

119

1 Class Description
This class is responsible for starting the MSDE or SQL server, ensuring that the
HFACS database is installed, and managing database updates.

2. Data Member Description
sUser--The user ID in string type.

sPasswor d-- The user password in string type.

sSvrName--The name of the MSDE or SQL Server in string type.

sM DFName--The name of the .mdf file containing the database in string type.
sDBName--The name of the database in string type.

slnstDirectory--The application path in string type.

sAutomaticL ogon--Toggle to log on with/without prompt in string type.

sFirstRunCheck--Toggle for determining if this is the first run after an update in
string type.

SNTAuth--Toggle for determining if NT authentication should be used for logon
attempts in string type.

sTypeDB--The type of DB this program will represent (mil, civilian, or both) in
string type.

3. M ethod Description

Class_Initialize()—Default no argument constructor (initialize event).

Init()--1f an instance of a class is created using the psuedo-constructors from the
Constructors.bas module, this function is called to pass initial values, thereby mimicking
the behavior of a constructor with arguments. Passed in values are all required, but the
Constructors.New_MSDE() function automatically sets passed-in vaues to global
variable values if they are l€eft blank.

startM SDE()--This procedure will start an instance SQL Server and create a
connection to it, thereby verifying that the specified server exists and that it is started. If
the server is adready running, the error trap will exit the procedure and leave the server

running. A bugin SQL Server 2000 prevents SQLDMO from starting a remote server so
120

this code also detects the error and switches to an ADO type connection to verify that the
HFACS database is present on the remote machine. In the case of the ADO connection, a
copy the database either exists or doesn't exist on the remote server. If the ADO
connection fails, a global flag is set so that al classes in the component know not to try to
copy an instance of the database to the remote server, which would generate another
error.

copyM DF()--This procedure will check for the database on alocal Server. If the
database does not exidt, it will then copy and install the HFACS database from the
application path to the Server data directory making a backup copy of the old database in
case an error occurs and arestore is needed. The last two copies of the database are kept
in the server data directory in an attempt to prevent data loss.

dropDB()--This procedure will check for the database on the Server. If the
database exists it will then permanently drop it. A norma drop specifies the
bKillIDBFiles parameter as False, so a backup of the database is created before dropping
it. Passing avalue of true for this parameter drops the database with no backup.

databaseExists()--This procedure will connect to a SQL server that is already
running and determine if a database exists.

StartAndCopy()--This procedure combines the functionality of the startM SDE()
and copyMDF() functions with the added ability to determine if a copy is needed based
upon the results of the startMSDE() call. For example, if a remote connection is
attempted and succeeds, startM SDE() will return True, but no copy will be necessary. In
addition, this function detects if a copy failed and will attempt to repair the database by
offering an option to restore an old copy of the database. Thisis useful when called from
afailed FTP update attempt.

restoreOIldDB()--This function is called when a copy operation fails and there is
no HFACS database file attached to the local server. Once called, this function prompts
the user to restore the old database. |If the user opts to restore the database, a restore is
first attempted using the current logon information. If this attempt fails, a second attempt
is made as a "last-ditch” effort using the "sa' logon and no password. If both attempts
fail, the database will not be installed on the local server and the HFACS program will

121

not function. System Administrator assistance will be required to attach a copy of the
database.

restartM SDE()--Before an .mdf database file can be dropped and a new file
attached, all users must be logged off. This function stops and restarts the server
effectively ensuring all users are logged off and that the server services are refreshed.
This function can only be used in conjunction with an update operation (either disk or
FTP) as it aso copies the file from the download/temp copy directory (which is the
application path) to the server data directory. This copy can only be performed when the
server is stopped.
G. CALLBACK CLASS

<<Class Module>>

CallbackCls

ﬂcFTPCBK_CompIete()

FigureC.7. Class Diagram for Callback Class.

1 Class Description
This class implements the cFTPCBK calback interface of the HFACS FTP

server. The methods of this class provide the means for the HFACS server to notify (or
callback) class instances from this component which utilize the FTP server functionality.
Basically, the members of this class provide a communication channel. The FTP server
(HFACSFTP.exe) provides the functions needed to get FTP updates. These functions
and their associated classes were removed from this component and compiled separately
in order to work around the inability of Visual Basic to provide support for free
threading. By placing the FTP functionality in a separately compiled executable, it can
run in it's own process, which alows screen updates during long FTP downloads.

2. Data Member Description

None

122

3. Method Description

cFTPCBK_Complete()--An FTP update of the HFACs database requires the
download of 2 files (HFACS.mdf & HFACS log.Idf). This function accepts messages
from the FTP server and notifies the frmFtpUpdate of progress. Specificaly, of errorsin
download and of successful download. If the first file is downloaded successfully
(ErrCode = True And gIntCounter = 1), then this function notifies the frmFtpUpdate to
begin the next download. After successfully downloading both files, this function closes
the frmFtpUpdate form.
H. INIFILE CLASS

<<Class Module>>
INIFile

@; msWbkName : String

F <<Declare>> WritePrivateProfileString()
EW <<Declare>> GetPrivateProfileString ()
&3 <<Declare>> GetWindowsDirectory ()

G 1nit()

R WriteTolniFile()

w% DeletelniSection()

@‘ DeletelniKey()

q[* GetlniFileName()

@‘ ReadFromIniFile()

Figure C.8. INIFile Class Diagram.

1 Class Description

This class creates .ini File objects used to create, delete, set, and get valuesin a
standard format Microsoft .ini file. It uses calls to the Windows API for efficiency.

2. Data Member Description

msWbkName--The name of the ini file to read in string type.

3. M ethod Description

Init()--1f an instance of a class is created using the psuedo-constructors from the
Constructors.bas module, this function is called to pass initia values, thereby mimicking
the behavior of a constructor with arguments. Passed in values are all required, but the

123

Constructors.New_INIFile() function automaticaly sets passed-in values to global
variable values if they are left blank.

WriteT ol niFile()--Write a section, key, and value to an .ini file.

Deletel niSection()--Delete a section and all of its keys from an .ini file.

Deletel niK ey()--Delete akey and its value from an .ini file.

GetlniFileName()--Return name for .ini file. Name includes name of workbook
fileand ".ini" extention.

ReadFromlniFile()--Read a value from an .ini file, given the file name, section,
key, and default value to return if key is not found.
l. HFACSMAIN CLASS

| <<Module>>
HEACSMain

gdatServerStarted : Date _

<<Const>> gINIFILENAME : String = "hfacs"

gStrFileName : String

gStrUlD: String

gStrPWD : String]

gStrServerName : String

gStrDatabaseFileName™ String

gStrDatabaseName : String

gStrAppPath : String

gStrAutoLogon : String

gStrFirstRun : String

gStrNTauth : String

gStrTypeDB : String _

gTheConnectionString : String

gblnPromptedLogonSuccess : Boolean
bInNETPSuccess : Boolean
StrTextMessage : String

gIntTimeToWait : Integer

gintCounter : Integer

gbInNoCopyNeeded : Boolean

o e

198ben(

B TN

FigureC.9. HFACSMain Class Diagram.

1. Class Description
This module is accessible to all classes and forms in the project. It contains
declarations for all global variables used to pass values between forms and instances of

classes.

124

2. Data Member Description

gdatServer Started--This variable is used by HFACSMain.Main() for initializing
the entire component. It is required for all compiled DLLSs, but not used for anything
else. Itisadatetype.

gINIFILENAM E--Constant variable to hold the name of the .ini file. It is a
string type and its value is “hfacs’. Thisisaglobal variable.

ol NIFile-- Reusable object variables. These variables are used over and over by
classes and forms. They are created and destroyed within the same function whenever
possible. It isan instance of INIFile and it has globa scope.

ol NI FileController--Reusable object variable for the INI file control class. This
isaglobal variable.

oHFACSConnection--Reusable object variable for the HFACSConnection class.
Thisisagloba variable.

oM SDE--Reusable object variable for the MSDE Class. Thisisagloba variable.

oUpdateController--Reusable object variable for the UpdateController Class.
Thisisaglobal variable.

gStrFileName--Global variable to hold the path to the Windows system
directory. Thisisastring type.

gStrUID--Globa variable representing the user ID in string type.

gStrPWD--Globa variable representing the user password in string type.

gStr Server Name--Global variable representing the name of the MSDE or SQL
Server as string type.

gStr DatabaseFileName--Global variable representing the name of the mdf file as
string type.

gStr DatabaseName--Globa variable representing the name of the database as
string type.

gStr AppPath--Global variable representing the application path as string type.

gStrAutoL ogon--Globa variable to toggle to logon without prompt as string
type.

gStrFirstRun--Global variable representing the toggle for determining the first

time the program has been run as string type.
125

gStrNTauth--Toggle for determining if NT authentication should be used for
logon attempts as string type.

gStrTypeDB--The type of DB this program will represent (mil, civ, or both) as
string type.

gTheConnectionString--Globa variable to hold the value of the current
connectionstring as string type.

gSQL ServerPath--'Global variable to hold the value of the SQL Server
subdirectory as string type.

gblnPromptedL ogonSuccess--Boolean that indicates a success/failure of a
prompted logon.

gbInFTPSuccess--Boolean that indicates a successfailure of an FTP update
attempt.

gStrTextMessage--A string type that holds a message for label on frmWait.
Allows you to change the message from any location in this component.

gIntTimeToWait--An integer variable that represents the amount of time for
frmWait to count. Allows you to set the number of seconds for frmWait to actually wait.

glntCounter--Reusable integer variable for counters throughout the component.

gbInNoCopyNeeded--Boolean for indicating no copy is necessary. This is
required when making a connection to a remote host because the SQL Server 2000
version of SQLDMO won't connect to a remote host. To work around this, an ADO
connection is attempted. If an ADO connection succeeds, then the database exists on the
server being connected to, so no copy is needed . . . and this boolean is set.

a) Method Description.

Main()--This code is executed when the component starts, in response to the first
object request. It is the "Man" procedure responsible for initializing the entire
component and is required for all compiled DLLSs.

| SOpen()--Determines if a form is open or not. Useful for determining when
screen refreshes are needed.

126

J. INIFILECONTROLLER CLASS

<<Class Module>>

INIFileController

= inito
E‘ readINlentries()
%‘writelNlentries()

Figure C.10. INIFileController Class Diagram.

1 Class Description

This class creates instances of INIFilecls used to create, delete, set, and get
values in a standard format Microsoft .ini file.

2. Data Member Description

None

3. Method Description

Init()--1f an instance of a class is created using the psuedo-constructors from the
Constructors.bas module, this function is called to pass initia values, thereby mimicking
the behavior of a constructor with arguments. Passed in values are all required, but the
Constructors.New_INIFileController() function automatically sets passed-in values to
globa variable values if they are left blank.

readl Nlentries()--This function creates an instance of the INIFile class and reads
values from the HFACS.ini file.

writel Nlentries()--This function creates an instance of the INIFile class and
writes values to the HFACS.ini file.

127

K. WAIT CLASS

<<Form>>

frmWait

ﬂForm_GotFocus()
@Form_Load()

Figure C.11. Wait Class Diagram.

1. Class Description

This class is responsible for showing a status bar capable of pausing the number
of seconds specified by HFACSMain.gintTimeToWait and displaying the message
contained in HFACSMain.gStrTextM essage.

1 Data Member Description

None

2. Method Description

Form_GotFocus()--This sub reads the values contained in the global variables to
determine how long to show itself and what message to display.

Form_L oad()--This sub reads the values contained in the global variables to
determine the message to display on the form.
L. WELCOME CLASS

<<Form>>

frmWelcome

Hcmdok_Click()

Figure C.12. Welcome Class Diagram.

1 Class Description
This class is responsible for displaying an al text welcome message when it is
caled.
128

2. Data Member Description

None

3. Method Description

cmdOk_Click()--This function unloads this form once the user clicks the OK
button.
M. CONSTRUCTORSCLASS

<<Module>>

Constructors

. * New_INIFile()

I * New_INIFileController()

: * New_HFACSConnection()
* New_MSDE()

Figure C.13. Constructors Class Diagram.
1 Class Description

This module defines functions that pair creation of new object instances using the
reusable global objects defined in HFACSMain class with a call to an Init() function of
the associated class. In this manner, these functions can act as psuedo-constructors that
are capable of passing arguments -- a feature not available in Visua Basic 6.0.

2. Data Member Description

None

3. Method Description

New_INIFile()--This function acts as a psuedo-constructor. It creates a new
INIFIle object and calls the INIFile.Init() function, passing desired parameters to ensure a
consistent state.

New_INIFileController()--This function acts as a psuedo-constructor. It creates
a new INIFlleController object and calls the INIFileController.Init() function, passing
desired parameters to ensure a consistent state.

129

New_ HFACSConnection()--This function acts as a psuedo-constructor. It
creates a new HFACSConnection object and calls the HFACSConnection.init() function,
passing desired parameters to ensure a consistent state.

New_M SDE()--This function acts as a psuedo-constructor. It creates a new
MSDE object and calls the MSDE.Init() function, passing desired parameters to ensure a
consistent state.

N. ERRORLOG CLASS

<<Class>>
- CErrorLog
‘:*iErrorLog:Integer
a1 Class_Initialize()
=" ErrorLog()
¥ ClearLog()

Figure C.14. ErrorLog Class Diagram.

1. Class Description

This writes status and error messages to the App.path connectionErrors.log file.

2. Data Member Description

iErrorLog--Integer value for each entry

3. Method Description

Class I nitialize()--Default no-argument constructor for (initialize event).

ErrorLog()--Open the a file called ConnectionErrLog.log in the application path
and write error entriesto it.

Clear L og()--Clears the ConnectionErrLog.log.
O. FTPCBK CLASS

<<Class Module>>
cFTPCBK

ﬁ Complete()

Figure C.15. FTPCBK Class Diagram.
130

1. Class Description

The method of this class provide the means for the HFACS server to notify (or
callback) class instances from this component which utilize the FTP server functionality.
The FTP server (HFACSFTP.exe) provides the functions needed to get FTP updates.
These functions and their associated classes were compiled separately in order to work
around the inability of Visual Basic to provide support for free threading. By placing the
FTP functionality in a separately compiled executable, it can run in it's own process,
which allows screen updates during long FTP downloads.

2. Data Member Description

None

3. M ethod Description

Complete()--An FTP update of the HFACs database requires the download of 2
files (HFACS.mdf & HFACS log.Idf). This function sends messages from the FTP
server and notifies the Callback class of the progress. Specifically, of errorsin download
and of successful download.
P. TIMER CLASS

<<Form>>

frmTimer

@ Timer1_Timer()

Figure C.16. Timer Class Diagram.
1. Class Description

This class disables the timer as the FTP class initiates the change in

2. Data Member Description

None

3. Method Description

Timerl Timer()--This procedure is executed only once per each invocation and
disables the timer.

131

Q. FTP CLASS

cFTP . ERRNOCONNECTION t<<Get>>Password

] NTERNET OPEN_TYPE_DIRECT '_ERRNODOWNLOAD W<<Get>> Directory!
=¥ INTERNET_OPEN_TYPE_PROXY " ERRNORENAME v <<Let>> Directory(
= INTERNET_INVALID_PORT_NUMBER " ERRNODELETE * Connected()
= . FTP_TRANSFER_TYPE_ASCII " ERRALREADYCONNECTED | & Connect()
% FTP_TRANSFER_TYPE_BINARY " ERRFATALERROR Disconnect()
=¥ FILE_ATTRIBUTE_NORMAL i SESSION :string *GetDirectoryList()
) INTERNET_FLAG_PASSIVE " miiNetHandlelong gaStartGetFTP()
= % ERROR_INTERNET_EXTENDED_ERROR '_m|00nnection;|ong ;GetFile()
3 INTERNET_SERVICE_FTP " msHostAddress string aPUtF”e()
=¥ errCannotConnect g msUser string RiRenamefFile()
2| errNoDirChange s ‘string *DeleteFiIe()
S erCannotRename :-msDirectory :string *RemoteChDir()
: -. efrCannothelete " ServerFileAndPath :string *GethETErrorMsg(
3 -. eriNotConnectedToSite i DestinationFileAndPath :string
i = A Sy __ TransferType :string
B errinvalidProperty .
e N orrratal Classlnitializg()
= N <<Let>> TypeDatabase()
gt fASC <<Let>> host8
4. ftBinary <Get>> Host
2 » ERRCHANGEDIRSTR <Get>> User()

» ERRCONNECTERROR <<Let>> User()

<| et>>Password()
Figure C.17. FTP Class Diagram.
1 Class Description

This class wraps the functionality of the Win32 Winlnet.DLL. It could easily be
expanded to provide HT TP/Gopher and other internet standard file protocols.

2. Data Member Description
INTERNET_OPEN_TYPE_DIRECT--Constant variable for registry access

Settings.

INTERNET_OPEN_TYPE_PROXY--Constant variable for registry access
settings.

INTERNET_INVALID_PORT_NUMBER-- Congtant variable for registry
access settings.

FTP_TRANSFER_TYPE_ASCII-- Constant variable for registry access
settings.

FTP_TRANSFER_TYPE_BINARY-- Constant variable for registry access

settings.
132

FILE_ATTRIBUTE_NORMAL-- Constant variable for registry access settings.
INTERNET_FLAG_PASSIVE-- Constant variable for registry access settings.

ERROR_INTERNET_EXTENDED ERROR--Congtant variable for error
message.
INTERNET_SERVICE_FTP--Constant variable for the type of service to

access.
err CannotConnect--Variable representing atype of FTP error.
errNoDir Change -- Variable representing atype of FTP error.
err CannotRename-- Variable representing atype of FTP error.
errCannotDelete-- Variable representing atype of FTP error.
errNotConnectedToSite-- Variable representing a type of FTP error.
err GetFileError-- Variable representing atype of FTP error.
errinvalidProperty-- Variable representing a type of FTP error.
errFatal-- Variable representing atype of FTP error.
ftAscii--File transfer type (ASCII)
ftBinary-- File transfer type (Binary)
ERRCHANGEDIRSTR--Constant variable of string type with an error message.

ERRCONNECTERROR-- Constant variable of string type with an error
message.

ERRNOCONNECTION-- Constant variable of string type with an error
message.

ERRNODOWNL OAD-- Constant variable of string type with an error message.

ERRNORENAM E-- Constant variable of string type with an error message.

ERRNODEL ETE-- Constant variable of string type with an error message.

133

ERRALREADYCONNECTED-- Constant variable of string type with an error
message.
ERRFATALERROR-- Constant variable of string type with an error message.
SESSION-- Constant string variable that identifies the session to Windows.
mlINetHandle--Long variable that identifies the INet handle.
mlConnection--Long variable that identifies the connection handle.
msHostAddress-String variable for standard FTP properties for this class.
msUser-- String variable for standard FTP properties for this class.
msPasswor d-- String variable for standard FTP properties for this class.
msDirectory-- String variable for standard FTP properties for this class.
ServerFileAndPath--String variable that holds the server file path.

DestinationFileAndPath--String variable that holds the destination file path for
the downloaded files.

Transfer Type--String variable that indicates the type of transfer(ftp or disk).

3. Method Description
Class_Initialize()--Create Internet session handle.

Class_Terminate()--Kill off any connection and API handle.
<let> Host()-- Set the Host Name - only if not connected.
<get> Host()--Get the host name.

<let> User ()--Set the user - if not connected.

<get> User ()--Get the user name.

<let> Passwor d()-- Set the password - only if not connected.
<get> Passwor d()--Get the user password.

<let> Directory()--Set the directory- only if not connected.

134

<get> Directory()--Get the directory.

Connected()--Indicates whether the system is connected to a server. It returns a

boolean.

Connect()--This function connects to the FTP server. It will raise an error if the
system is already connected.

Disconnect()--This function disconnect from the FTP server only if the system is

currently connected.

GetDirectoryList()--Returns a Disconnected record set for the directory and filter
string.

StartGetFTP()--This function establishes the variables to start an FTP session.

GetFile()--Get the specified file to the desired location using the specified file
transfer type. This code is executed when the timer fires for the first time. It unloads the

form and destroys it completely.

PutFile()--This function copies the files to the desired path specified in the
parameter list of this function.

RenameFile()--This function renames the existing files for backup purpose. This

function maintains two backup files.
DeleteFile()--This function deletes the oldest backup as the files are copied.
RemoteChDir ()-- This function changes the directory remotely.

GetINETErrorM sg()--Returns an error message indicating type of error that had

occured.

135

THISPAGE INTENTIONALLY LEFT BLANK

136

=<Class Module>
ConnectonEuncions

SeeComecon
IntConnection() 3
ey
oot
A
b y
Commandborera
a?;?yg,a»#‘ Wt
RN

Form>
fmCodeMaintenance

creste new code

cmdClose Clek()
CmdOk_Clk)

subfmFaciors ‘add new factor

cmaAddFactor_Clck()
cmdDeFacior_Click()

APPENDIX D.

<<Form>>
ExperiQuery

Form_Actvate)
1 Deactivate()

<o
VieuMshops

cmaCancel Cick)

et

Fom_Loadg view mishap
Open)

cmaviow ki Q.

oty

MoveToCent

~Form>>

e e en i dvove
CiEpenay, osenoves 0
.

cmaCloseQuenyMenu_Click)
% ey

MoveToCenter)

show mishep

e
B,

show progress bar

B

erdCisEQienens cick)
emdExpertQuery Click()

et query menu

B
\mxzﬂ;é’mgmwmw
\anvaDn Cllck()
s s
& frtaee
Breist e
- B o
i esetion:
g e
s
S
-mdOrganizational_Cl i
BR 00 stenigep
et
SR
v el)
Eom Cﬁi“ add Mishap <<Form>>
R
emste,, msectishan
gmsnesstuqc!‘ukwa@ﬂ
mansqemzmcumﬂ cmdDone Click()
addFactor(cmdViewMishay lick
22 i et 0
ETeey, et Clk)
Yanianercondo ama_ciokg
sl Fom_Actte)
Form_Open()
edit mishep
add factors
sort mishaps
s
imEanss
e a0 L
ndsmvn IR
Fom_Cise) prp——y
Form_Dirty() Frame97_AfterUpdate()
oo Ay
CaProven Clck) oerySi
et becomightmtne)

<<Class Module>>
L

TeTSToNMIoS1Z6. LoNg:

il er: Long
dwPlatformid: Long
<<const>> SM_CLEANBOOT

<const>> VER PLATFOI

IsRuntime)
IsRunning)

getOSData

<<Class>>
INIFile

msWkbName String
Init)

WiiteTolniFile)
DeletelniSection (

Deletelnikey(
GetiniFileName)
ReadFrominiFile()

<<Class Module>>

GlobalDeclarations
gLngMishapToGet: Long
gFomNeedsRefresh: Boolear
gBInAddMishap : Boolean
gStDescription String

e: String

GetDBType()
t0ggleDBType)
getDBTypeFromFile()
synchFileDBTypeToDbValud)

<<Class>>
cIFormWindow

m_hwin: Long

M rctiindow: RECT

RECT: Type

POINTAPI: Type

<<const>> m_ERR_INVALIDHWND
<<const>>m_ERR_NOPARENTWINDOW
ACeETTor

UpdatewindowRect()

<<let>> Width()
<<get>> Parent()

137

getreport

E O
ot e omoinal o
et

cm@f&ﬁsumyu show progr

MoveTocen

<o
Pleaselai

Command17_Ciek()

Form_Load()

~<rom>>

Emaal Clei ;
Emdarzral Clek)

2 i
i
G

&]
B s%vp
o'm:%%enlevﬂ

cmdCioseReportitenu_Clck(

get description

<o

Form_Load()
Fom_open()
MoveToCenier (

<<Class Module>>
ezsizingFunctions
RECT: Type
TEXTMETRIC: Type
ezsizeFom
ezGetScreenRes()
ezGetScaleFacto)
ezResize()
ezLargeFonts()

show activity

<<Form>>
ExperGraph

“GmdClose_Mousehove

ERasaencia0

Gim-Gpon
emdClose_Cick()
MoueTaceny

draw graph

AcldiEFazn

Elsie iﬂ%ﬁ?&ha‘eu

GhiThaGraph TostFoct

I§|§NMR5§§6 (s
ot ES@EWE!S“‘“‘U
jEnlarge_ Al\ev fate()

e

<<Class>>
CloseCommand

MENUITEMINFO: Type
<<const>>MF_GRAYED
<<const>>MF_BYCOMMAND)
<const>>SC_CLOSE

<<get>>Enabled()
<<let>>Enabled()

THIS PAGE INTENTIONALLY LEFT BLANK

138

APPENDIX E. DESCRIPTION OF BUSINESSLOGIC CLASSES

A. INIFILE CLASS

<<Class>>

INIFile

«» msWkbName: String
RS Init()

o8 Write TolniFile()

i+ # DeletelniSection()
?{5 DeletelniKey()

1™ GetIniFileName()
15® ReadFrominiFile()

Figure E.1. Class Diagram for INIFile Class.

1. Class Description
This class creates .ini File objects used to create, delete, set, and get valuesin a
standard format Microsoft .ini file. It uses calls to the Windows API for efficiency.

2. Data Member Description
msWkbName--The name of the ini file to read as a string type.

3. M ethod Description
Init() -- If an instance of aclassis created using the psuedo-constructors from the

Constructors.bas module, this function is called to pass initial values, thereby mimicking
the behavior of a constructor with arguments. Passed in values are all required, but the
Constructors.New _[INIFile() function automatically sets passed-in values to global
variable values if they are left blank..

WriteTol NI File() --Write a section, key, and value to an .ini file.

Deletel NI Section()--Delete a section and all of its keys from an .ini file.

Deletel NI K ey()--Delete a key and its value from an .ini file.
GetlIniFileName()--Return name for .ini file. Name includes name of workbook

fileand ".ini".

139

ReadFromlniFile()--Read a value from an .ini file, given the file name, section,
key, and default value to return if key is not found.
B. GLOBALDECLARATIONSCLASS

<<Class Module>>
> GlobalDeclarations
£ gLngMishapToGet: Long
¢2 gFormNeedsRefresh: Boolear

£ gBInAddMishap: Boolean

£ gStrDescription: String

¢s gStrDatabaseType: String

* getDBType()

& toggleDBType()

* getDBTypeFromFile()

* synchFileDBTypeToDbValue(

Figure E.2. Class Diagram for GlobalDeclaration Class.

1. Class Description

Contains al definitions for application global variables. Most of these are needed
due to the inability of VBA to pass parameters as part of a constructor.

2. Data Member Description

gLongMishapToGet -- The ID of the mishap to read as long type.

gFormNeedsRefresh -- Indicates that the form needs to be refreshed as Boolean
type.

gBInAddMishap -- Indicates .a mishap has been added as Boolean type.

gStrDescription -- Holds the value if the description detail is too long to be held
ininitial text field as string type.

gStrDatabaseTyp -- Holds the value of the database type (civilian or military) as

string type.
3. M ethod Description
getDBType()--Determines the type of database (military or civilian) based on the

SQL severer thlDatabaseType settings.

toggleDBType()--Toggles the current investigation module DB type.
140

getDBTypeFromFile()--Determines the type of database (military or civilian)
based on the HFACS.ini file settings.

snchFileDBTypeT oDbValue()--Ensures that this program opens in the same
mode (civilian or military) as the HFACS instance that launched it.
C. DETERMINEOSDECLARES CLASS

<<Class Module>>

_ DetermineOSDeclares

T ;ﬂwOSVersmnlnfoSlze: Long
#wMajorVersion: Long
ZdwMinorVersion: Long
ZwBuildNumber: Long
ZdwPlatformld: Long
£+<const>> SM_CLEANBOOT
Q‘:;<const>> SM_DEBUG
Sz<const>> SM_SLOWMACHINE
/x<const>> VER_PLATFORM_WIN32s
5’;;<const>> VER_PLATFORM_WIN32_WINDOWS
Zi<const>> VER_PLATFORM_WIN32_NT

SsRuntime()
*sRunning()

Figure E3. Class Diagram for DetermineOSDeclares Class.

1 Class Description
Contains various functions for determining system properties like O/S type and

version of Access that is running.

2. Data M ember Description
dwOSVersioninfoSize -- Holds the operating version information that pertains to

size aslong type.
dwM ajorVersion -- Holds the operating version information as long type.
dwMinorVersion -- Holds the operating version information as long type.

dwBuildNumber -- Holds the operating version information that pertains to the

build as long type.

141

dwPlatformld -- Holds the operating version information as long type.
SM_CLEANBOQOT -- Constant variable that holds the value 67.
SM_DEBUG -- Constant variable that holds the value 22.
SM_SLOWMACHINE -- Constant variable that holds the value 73.
VER_PLATFORM _WIN32s -- Constant variable that holds the value 0.

VER_PLATFORM_WIN32 WINDOWS -- Constant variable that holds the

value 1.

VER_PLATFORM_WIN32 NT -- Constant variable that holds the value 2.
3. M ethod Description
I sRuntime()--Determines if Access runtime is being used to run the application.

Access runtime has no support for reports.

IsRunning()--To prevent a second instance from loading if a user mistakenly
attempts to launch it twice. This code is called from the autoexec macro to test whether

the app is already running and terminate the launch if a copy of it is already open.

142

D.

FORMWINDOW CLASS

<<Class>>

clFormWindow

Figure E.4.

5+ m_hWin: Long

= M_rctWindow: RECT

= RECT: Type

5% POINTAPI: Type

5k <<const>> m_ERR_INVALIDHWND

M <<const>> m_ERR_NOPARENTWINDOW

RaiseError()
=¥ UpdateWindowRect()
& <<get>> hwnd()

*<<Iet>> hwnd()
*<<get>> Left()
*<<Iet>> Left()

% <<get>> Top()
W<<let>> Top()

8§ <<get>> Height()
& <<let>> Height()
*<<get>> Width()
& <<let>> Width()
*<<get>> Parent()

1. Class Description

Moves and resizes awindow in the coordinate system of its parent window.

2. Data Member Description

m_hWin -- Handle of the window as long.

m_RctWindow -- Rectangle describing the sides of the last polled location of the

window as arectangle type.

RECT -- RECT structure used for API cdls.

POINTAPI—POINTAPI structure used for API calls.

m_ERR_INVALIDHWND -- Private error constants for use with RaiseError

procedure. Holds value of 1.

m_ERR_NOPARENTWINDOW --

RaiseError procedure. Holds value of 2.

143

Class Diagram for FormWindow Class.

Private error constants for use with

3. Method Description
RaiseError()--Raises a user-defined error to the calling procedure.

UpdateWindowRect ()--Places the current window rectangle position (in pixels,

in coordinate system of parent window) in m_rctWindow.

<<get>> hwnd() -- Returns the value the user has specified for the window's

handle.

<<let>> hwnd() -- Sets the window to use by specifying its handle. Only accepts

valid window handles.

<<get>> Left() -- Returns the current position (in pixels) of the left edge of the

window in the coordinate system of its parent window.

<<let>> Left() -- Moves the window such that its left edge falls at the position

indicated (measured in pixels, in the coordinate system of its parent window).

<<get>> Top() -- Returns the current position (in pixels) of the top edge of the

window in the coordinate system of its parent window.

<<let>> Top() -- Moves the window such that its top edge falls at the position

indicated (measured in pixels, in the coordinate system of its parent window).
<<get>> Width() -- Returns the current width (in pixels) of the window.

<<let>> Width() -- Changes the width of the window to the value provided (in
pixels).

<<get>> Height() -- Returns the current height (in pixels) of the window.

<<let>> Height() -- Changes the height of the window to the value provided (in
pixels).

<<get>> Parent() -- Returns the parent window as a clFormWindow object. For

forms, this should be the Access MDI window.

144

E. SIZING FUNCTION CLASS

<<Class Module>>

ezSizingFunctions

é:}RECT: Type
¢ EXTMETRIC: Type

szizeForm()
*szGetScreenRes()
ﬁzGetScaleFactor()
%-2ReSize()
NbzLargeFonts()

Figure E.5. Class Diagram for Sizing Function Class.

1. Class Description

Contains various functions for dynamically resizing the forms in the application
based on the user's screen resolution. Created by EZ Sizing Functions, Copyright (C)
2000 Database Crestions, Inc. Revision 6/14/00 based on 8/25/99 code with revisions.

2. Data Member Description
RECT -- RECT structure used for API cdls.

TEXTMETRIC—TEXTMETRIC structure used for API cals.

3. M ethod Description

ezSizeForm ()--This subroutine will resize the form specified by parameter
xForm by the factor of ScaleFactor. If scale factor is O or negative, automatic scaling will
occur based on the following table.

145

Value Formsoriginally designed for
0 640 x 480
-1 800 x 600
-2 1024 x 768
-3 1280 x 1024
-4 1600 x 1200
-5 1152 x 864 OR 1152 x 870

Table E.1. EzSizeForm Values.

ezGetScreenRes()--This function returns the windows screen size.

ezGetScaleFactor ()--Returns a scale factor for resizing based on the passed
parameter S which should represent the screen size a form was designed for the scale

factor returned is based on the current screen resolution.
ezReSize ()--This subroutine will resize the form based on its current dimensions.

ezl ar geFonts ()--This function returns a true if large fonts are being used.
F. SELECT MISHAP CLASS

<<Form>>

frmSelectMishap

ZimdDone_Click()
@ndViewMishap_cnck()

HmdAdd_Click()

Bimakill_Click()

ﬂorm_Activate()
ﬁorm_Open()

Figure E.6. Class Diagram for Select Mishap Class.

1. Class Description

This class is displays al the Mishaps in the database an alows the user to sort
them by various fields in order to select a mishap to view or edit. It has buttons that
allow initiation of a new Mishap or deletion of an existing mishap.

146

2. Data Member Description
None.

3. Method Description
cmdDone _Click() -- Closes the form.

cmdViewMishap_Click()--Opens the mishap selected in the subform.
cmdAdd_Click()--Opens the add mishap wizard.
cmdKill_Click()--Deletes the mishap selected in the subform.

Form_Activate()--Update the menu bar and see if the subform needs to be
refreshed.

Form_L oad()--Dynamically resizes the form to the users screen resolution and

then centersit.

Form_Open()--Updates the menu bar and sets the MainMenu form to invisible so

that the screen is easier to view.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
gets its own version of this function so that minor adjustments can be made on a form by
form basis.

G. SUB SELECT MISHAP CLASS

<<Form>>

subfrmSelectMishap

ﬂ Form_Open()

@ Frame97_AfterUpdate()
& cmdFind_Click()

& IbiMore_Click()

g tglDecending_AfterUpdate()

Figure E.7. Class Diagram for Sub Select Mishap Class.
147

1. Class Description
This class is used in a form/subform relationship with the SelectMishap form. It

displays the mishaps in a sortable order.
2. Data Member Description
None.

3. Method Description
Form_Open()--Sets color values for the columns in the form as well as initial

sort order.

Frame97_After Update()--Logic module that reacts to radio button clicks. Sorts
the data on the form in the order specified.

IbIMore_Click()--Reacts to the click of the "More..." box in each row of the data
in the form. Opens a form that displays a more detailed description of the mishap
because these descriptions are too big to fit in the datagrid of the form.

tglDecending_After Update()--Logic module that sorts the data on the form in
ascending or descending order based on the state of the toggle button.
H. EDIT MISHAP CLASS

<<Form>>
frmEditMishap

dCancel_Click()
dCodeMaintenance_Click()
dSave_Click()

Figure E.8. Edit Mishap Class Diagram.

148

1 Class Description

This class is used to edit mishaps and add factors. It is similar to the 20-1-2-
subFrm View mishaps class, but offers the additional capability to edit the data in the
underlying tables.

2. Data Member Description

None.

3. Method Descri ption

cmdCancel_Click()--Closes the form undoing changes but only for events that
have not aready been refreshed. For example, if you add a factor, the entire form is
refreshed . . . so clicking cancel cannot undo the addition of the factor - you have to use
the delete button. This function is only capable of undoing actions made to controls in

the top portion of the form, and then, only if arefresh has not yet been committed.
cmdCodeM aintenance_Click()--Opens the code maintenance form.
cmdSave _Click()--Saves the state of the data and closes the form.
Form_Close ()--Closes the form.

Form_Dirty ()--1f changes are made to the mishap displayed in this form then the
SelectMishap form will need to be updated when this form is closed. This function flags
aglobal variable so that when the SelectMishap form is reactivated, it refreshes to display
the changes.

Form_L oad()--Dynamically resizes the form to the users screen resolution and

then centersit.

Form_Open()--1f this form is opened from the 1-0-0-5-frmAddMishap then the
record that was just added needs to be viewed in this form otherwise, it will display the
record passed to it in the Global Declarations.gLngMishapToGet global variable.

cmdPreview_Click()--Opens the Mishap Snapshot report.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class

breaks Access's built-in autocenter function, so this method is needed to fix it. Each form

149

gets its own version of this function so that minor adjustments can be made on aform by
form basis.
l. MISHAP DESCRIPTION CLASS

<<Form>>

frmMishapDescription

dDone_Click()
' ¥m_Load()
' #m_Open()
: ®veToCenter()

Figure E9. Mishap Description Class Diagram.

1 Class Description
This class updates the menu bar and shows the value of the description for the

mishap stored.

2. Data Member Description
None.

3. Method Description
cmdDone _Click ()--Closes the form.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centersiit.

Form_Open ()--Updates the menu bar and sets shows the value of the description
for the mishap stored in the Global Declarations.gStrDescription global variable.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
gets its own version of this function so that minor adjustments can be made on aform by

form basis.

150

J. FACTORSCLASS

<<Form>>
subfrmFactors

exmdAddFactor_Click()
ZemdDelFactor_Click()

Figure E.10. Factors Class Diagram.

1 Class Description
This class is used in a form/subform relationship with the EditMishap form to
display, add, and delete factors to a mishap.

2. Data Member Description
None.

3. Method Description
cmdAddFactor_Click ()--Adds a blank factor to the mishap indicated by the

Global Declarations.gLngMishapToGet global variable.

cmdDelFactor_Click ()--Deletes the factor with the current focus.

151

K.

ADD MISHAP CLASS

<<Form>>
FrmAddMishap

=¥mdBack_Click()
£¥mdCrewCoord_Click()

= mdEnvironmental Click()
=1 ndEquipment_Click()

'SI ndError_Click()
=ImdMedical_Click()
SimdNext_Click()
SImdFinish_Click()

sImdOrganizational_Click()
s ndReadiness_Click()
sl ndSupervisory_Click()

sI'mdCodeMaintenance_Click()

3jorm_Close()
31form_Open()
SiktDate_GotFocus()
si'LisnessLogicForward()
uisnessLogicBackward()
31'skWhereToGo()
SfhanagementCond()

E4¥orm_Load()
=S aintainerCond ()
=2%/0rkingCond()

sindViolation_Click()

L - aintainerAct()
sinmdWorkspace_Click()

@oveToCenter()

Figure E.11. Add Mishap Class Diagram.

1 Class Description
This class is a wizard used to add Mishaps to the database. The illusion of many

forms is created using a TAB control on the form and setting the "tab style" property to
"None'. THISISIMPORTANT. The only way to edit the other pages of the tab control
is to set the tab property to "Tabs' when the form is in design view and then change it
back to "None" when finished. If you don't do this, you cannot edit any of the pages of
the wizard except the first one. After a mishap is added, the EditMishap form is opened
with the newly added Mishap selected for editing. This allows the user to immediately
add Factors without having to go back to the main menu.

2. Data Member Description
None.

3. M ethod Description
cmdBack_Click ()--Switches form focus back one tab in the tab view control.

152

cmdNext_Click ()--Switches form focus forward one tab in the tab view control.

cmdFinish_Click ()--Adds the mishap to the database and opens the edit form so

that the user can add factors.
cmdCodeM aintenance_Click ()--Opens the code maintenance form.

cmdCrewCoord_Click ()--For controlling movement between pages not capable

of movement using the "next" function.

cmdEnvironmental_Click ()--For controlling movement between pages not

capable of movement using the "next" function.

cmdEquipment_Click ()--For controlling movement between pages not capable

of movement using the "next" function.

cmdError_Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdMedical_Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdOrganizational Click ()--For controlling movement between pages not

capable of movement using the "next" function.

cmdReadiness Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdSupervisory Click ()--For controlling movement between pages not capable

of movement using the "next" function.

cmdViolation_Click ()--For controlling movement between pages not capable of

movement using the "next" function.

cmdWorkspace Click ()--For controlling movement between pages not capable

of movement using the "next" function.

Form_Close ()--Closes the form.

153

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centers it.
Form_Open ()--Initializes all variables.
txtDate _GotFocus ()--Ensures date fields are properly formatted to medium date.

businessL ogicForward ()--Logic to determine what page to go in the forward
direction.

businessL ogicBackward ()--Logic to determine what page to go in the Reverse
direction.

askWhereToGo ()--Logic to determine what page to go to based on user inpuit.
managementCond ()--For prompting users for type of 1st level factor to input.
maintainer Cond ()--For prompting users for type of 1st level factor to input.
wor kingCond ()--For prompting users for type of 1st level factor to input.
maintainer Act ()--For prompting users for type of 1st level factor to input.
addFactor ()--Creates a new default factor.

cmdCancel_Click ()--Closes the form undoing changes.

addMishap ()--Creates a new default Mishap.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
getsits own version of this function so that minor adjustments can be made on a form by
form basis.

L. CODE MAINTENANCE CLASS

<<Form>>
frmCodeMaintenance

cmdClose_Click()
a cmdok_Click()

Figure E.12. Code Maintenance Class Diagram.

154

1 Class Description
Allows an Administrator to add codes directly to the database code lookup tables.
2. Data Member Description
None.
3. Method Description
cmdClose_Click()--Closes the form.

cmdOk_Click()--Opens the appropriate table for direct editing based on the radio

button selection in the frame.

M.

CLOSE COMMAND CLASS

<<Class>>

CloseCommand

EMENUITEMINFO: Type

g<const>>MF_GRAYED
Zi<const>>MF_BYCOMMAND

{i‘const>>SC_CLOSE

*<get>>EnabIed()
§<|et>>Enabled()

Figure E.13. Close Command Class Diagram.
1. Class Description

Disables the Access close button on the base A ccess application window.

2. Data Member Description
MENUITEMINFO--MENUITEMINFO structure used for API cals.

MF_GRAYED--Constant value holding the value H1.
MF_BYCOM M AND--Constant value holding the value HO.

SC_CL OSE --Congtant vaue holding the value HFOG0.

3. M ethod Description
<<get>> Enabled ()--Grays out the close button on the Access window.

<<let>> Enabled ()--Grays out the close button on the Access window.

155

N. CONNECTION FUNCTIONS CLASS

<<Class Module>>
ConnectionFunctions

& CreateConnection ()

& InitConnection()

&% changeServer()

& getUpdateFTP ()

& getUpdateFromDisk()
% removeConnection()
& CommandbarEnable()
& toggleDBType()

& copyGraphToClipboard()
& toggleXLabels()

& toggleYLabels()

& sendClipToPrinter()

Figure E.14. Connection Functions Class Diagram.

1. Class Description

This module contains the vast majority of the "helper” functions used by the
program. It contains functions for connecting and disconnecting the application to a SQL
server, replacing the database via FTP and disk file, toggling database type, printing the
MS Chart graphs from the windows clipboard, as well as, all command bar functions and
command bar menu scripts.

2. Data Member Description

None.

3. Method Description

CreateConnection ()--Connects the application to a SQL server and provides the
interface for the HFACS.dIl. Read the initial values for most global program variables
from the HFACS.ini file viathe HFACS.dIl and the SQL Server that becomes connected.
Verifies the database type and ensure that the Server being connected to is of the proper

type (military vice civilian).

156

InitConnection ()--Disables the Access "close" button on the main access
window, preventing users from improperly shutting down the application. Launches the
"Please Wait" form while the connection to the SQL server is initiaized, giving the
illusion of separate threads of execution and providing the user a screen to look at during

this long process.

ChangeServer ()--Provides the functionality to change server connections via the
HFACS.dII.

getUpdateFTP()--Provides the functionality replace the database on the local
SQL server viaan FTP process. The user must be logged on with the sa account, being

an administrator is not enough.

GetUpdateFromDisk()--Provides the functionality replace the database on the
local SQL server via an file on a CD or network share process. The user must be logged
on with the sa account, being an administrator is not enough.

removeConnection()--Properly disconnects the application from the SQL server

and terminates the Access session.

Commandbar Enable()--Allows manipulation of command (menu bars). This
function has four arguments:. Cmdbar is a CommmandBar object that represents the
command bar containing the menu item to be enabled or disabled. CmdBarEnabled is a
Boolean value in which you pass "True" or "False" in order to enable or disable the menu
item being manipulated. TopLevel is an integer representing the index of the Top-level
menu item being manipulated. Sublevel is an optional integer representing the index of

the menu item being manipulated under the Top-level menu item.

toggleDBType()--Properly disconnects the application from the SQL server and

terminates the Access session.

copyGraphToClipboard()--Copies the MS Chat object on form
TheA ctual Graph to the windows clipboard.

toggleXL abels()--Toggles the X axis values visible/hidden for the MS Chart
object on form TheActua Graph.

157

toggleY L abels()--Toggles the Y axis values visible/hidden for the MS Chart
object on form TheActua Graph.

sendClipToPrinter ()--Prints the MS Chart object on form TheA ctual Graph.
O. PLEASE WAIT CLASS

<<Form>>
PleaseWait

ﬂommandl?_CIick()

@orm_Load 0

Figure E.15. Please Wait Class Diagram.

1. Class Description
This class is the splash screen that user sees at program initiation. It is
responsible for setting global properties for the session at startup.

2. Data Member Description

None.

3. Method Description

Command17_Click ()--Closes the form. This button is not visible during normal
program operation and must be turned on in design view to use it. It is provided for
troubleshooting connection problems which often result in a "hang" at this screen with

now way to terminate program execution unless this button is enabled.

Form_Load ()--Sets the global properties for the session. This includes

application icon, margins, and other default behaviors.

158

P. MAIN MENU CLASS

<<Form>>

MainMenu

siForm_Activate()
SyForm_Load()
=yForm_Open()
=¥bIAddEditMishaps_Click()
blAddEditMishaps_MouseMove()
E9bIExit_Click()

= blExit_MouseMove()

X bIGraph_Click()
blGraph_MouseMove()

=5 blInvestigate_Click()
blinvestigate MouseMove()
5 bIQuery_Click()

= blQuery_MouseMove()
c=riblReport_MouseMove()
wMoveToCenter()

Figure E.16. Main Menu Class Diagram.

1 Class Description

This class is the main switchboard for the program. It is responsible for launching
all other processes, connecting to the SQL server, validating Administrator settings, and
determining O/S platform.

2. Data Member Description

None.

3. Method Description

Form_Activate ()--Update the menu bar.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centersit.

Form_Open()--Set initial screen colors, determine OS type, and initiate
connection to the SQL Server.

159

IblAddEditMishaps Click()--Only Administrators can access the administration
functions and then, only for the local machine. This function ensures that the user is a
Window O/S Administrator, a SQL Server Administrator, and an HFACS Administrator.
If all these tests are passed, then the SelectMishap form is opened.

IblAddEditMishaps M ouseM ove()-- Sets command button text colors.

IblExit_Click()--Closes the program and properly disconnects from the SQL

server.
IbIExit_M ouseM ove()-- Sets command button text colors.
IbIGraph_Click()--Opens the Expert graph form (form-ExpertGraph).
IblGraph_M ouseM ove()-- Sets command button text colors.

Iblinvestigate Click()--Launches the Invetigatemdb Access database in a

separate process.
IblInvestigate M ouseM ove()-- Sets command button text colors.
IblQuery_Click()--Opens the Expert graph form (form-QueryMenu).
IblQuery_ M ouseM ove()-- Sets command button text colors.
IbIReport_M ouseM ove()-- Sets command button text colors.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
getsits own version of this function so that minor adjustments can be made on a form by

form basis.

160

Q. ACTUAL GRAPH CLASS

<<Form>>
ActualGraph

=F-hkStack_AfterUpdate ()
=¥-hkTranspose_AfterUpdate()
:" chtTheGraph_LostFocus()
L¥-mdClose_Click()
=¥-mdUpdate_Click()
E¥-orm_Close()
=¥-orm_Activate()
~orm_Deactivate()
=¥-orm_Load()

al¥-orm_Open()

o raChart_AfterUpdate()
raDimensions_ AfterUpdate()
=hstShowTheseX_AfterUpdate ()
stShowTheseX_LostFocus ()
=RistShowTheseY _AfterUpdate ()
= stShowTheseY _LostFocus ()
EROption13_LostFocus()
EXogEnlarge_AfterUpdate()
chtTheGraph_PointSelected()
oveToCenter()

Figure E.17. Actua Graph Class Diagram.

1 Class Description

Uses the MSChart20 Active-X control to create a graph based upon globa
variables passed from the ExpertGraph form. The MSChart20 control creates a graph
based upon values in its DataGrid. The datagrid is not visible and must be populated
completely via code. Various methods in this class are used to populate the datagrid and
then show portions of it based on input from the user. The datagrid data is obtained from
the RAC (Replacement For Access Crosstab) stored procedures to create the crosstab
results based on the values of GlobaDeclarations.gStrXFieldToGraph and
Global Declarations.gStrY FieldToGraph

2. Data Member Description

None.

161

3. Method Description
chkStack After Update ()--Sets the Stacking option of the MSChart control in

response to a checkbox update.

chkTranspose AfterUpdate ()--Sets the DataSeriesinRow option of the
MSChart control in response to a checkbox update.

chtTheGraph_L ostFocus ()--Updates the "Tips' label with information for the

user.
cmdClose _Click ()--Closes the form.

cmdUpdate Click ()--Rebuilds the MSChart20 control's Datagrid based upon
IstShowTheseX AfterUpdate() and IstShowTheseY AfterUpdate() information (which

corresponds to the users selectionsin the X and Y axislist box selection criteria).
Form_Close ()--Closes the form.
Form_Activate ()--Update the menu bar.
Form_Deactivate ()--Updates the menu bar.

Form_Load ()--Dynamicaly resizes the form to the users screen resolution and

then centersit.

Form_Open ()--Builds the MSChart20 control's Datagrid based upon the results
of a RAC stored procedure (4-0-1-0-flanCrossTabForGraphing). Also, sets up visual
aspects of the graph and populates the X and Y multi-select listboxes with values.

fraChart_AfterUpdate ()--Sets the ChartType option of the MSChart control in
response to a radio button selection. It has to check the value of fraDimensions to do
this, so it knows if the chart should be 2d or 3d.

fraDimensions AfterUpdate ()--Sets the ChartType option with respect to
number of dimensions (2d or 3d) of the MSChart control in response to a radio button
selection. It has to check the value of fraChartType to do this, so it knows what style

chart to create.

162

IstShowTheseX After Update ()--Builds the array used by cmdUpdate Click() to
update the datagrid rows (X Axis) based on the users X-axis selections.

IstShowTheseY _After Update ()--Builds the array used by cmdUpdate_Click() to
update the datagrid columns (Y Axis) based on the users Y-axis selections.

IstShowTheseY L ostFocus ()--Updates the "Tips' label with information for the

user.
IstShowTheseX L ostFocus ()--Updates the "Tips' label with information for the
user.
Option13_L ostFocus()--Updates the "Tips' label with information for the user.
togEnlarge AfterUpdate()--Enlarges or shrinks the form using the ezSizeForm
class.

chtTheGraph_PointSelected()--Updates the "Tips' labd with information
specified when the user clicks on a data point in the M SChart20 object.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
getsits own version of this function so that minor adjustments can be made on aform by
form basis.

R. EXPERT GRAPH CLASS

<<Form>>
ExpertGraph

sI-mdClose_MouseMove()

Figure E.18. Expert Graph Class Diagram.

163

1 Class Description
This class is used to select the X and Y axis criteria and pass the users selections

to global variables that the form TheActua Graph can use to display the graph.

2. Data Member Description
None.

3. Method Description
cmdClose MouseMove ()--Changes the color of the command button text in

response to a mouse move event.

cmdGraph_MouseM ove ()--Changes the color of the command button text in

response to a mouse move event.

cmdGraph_Click ()--Passes the appropriate field names corresponding to user
choices for X and Y axis graph criteria to global variables for the TheActua Graph form
to actualy create the graph.

Form_Activate ()--Update the menu bar.
Form_Deactivate ()--Updates the menu bar.
Form_Close ()--Closes the form.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centersiit.
Form_Open ()--Updates the menu bar and sets the focus to the close button.
cmdClose Click ()--Closes the form.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
gets its own version of this function so that minor adjustments can be made on aform by

form basis.

164

S. SUMMARY CLASS

<<Form>>

Summary

=i-bo*_Change()
=f-mdClose_Click()
=F-mdUpdate_Click()
sI-orm_Activate()
S¥-orm_Close()
sI-orm_Deactivate()
I-orm_Load()
'=¥-orm_Open()
ihopulateComboBoxWithAll()
joGetUpdate()
310GetRecords()
=itoreValues()
“hecklIfFormisDirty()
=" _DblClick()
vioveToCenter()

Figure E19. Summary Class Diagram.

1 Class Description
This class is used to depict the table of factor vs. mishap counts and percentages.

It allows the user to s=lect criteria from combo boxes and fills then calculates the values

for the table when the user clicks update.

When the form opens, it populates the combo boxes by running UNION queries
to build the recordsets needed to serve as control sources. This is necessary to add the
"<All>" choice. The only exception is the "Year" combo box. It uses a string
manipulation function called populateComboBoxWithAll() to build a value list. Thisis
necessary because the UNION method will only work with non-integer data types. The
problem with the populateComboBoxWithAll() method is that it is limited in size to
about 50 two dimensional entries. In addition, commas and semi-colons create problems

and must be removed from the string during build.

165

Finally, when the user clicks double clicks a label in the table, code is executed
that builds the input string for stored procedure flanCountflanFilteredMishaps which is
the recordsource for the ViewMishaps form. this input string is then passed to the "view"
form via a global variable and the viewMishaps form is opened.

2. Data Member Description

None.

3. M ethod Description

cbo* _Change ()--Used to mark the form as dirty (needing an update).Saves the
state of the data (and size of the form). Applies to al methods that start with cbo and
ends with _Change.

cmdClose Click ()--Closes the form.

cmdUpdate_Click()--Updates all data on the form by calling goGetUpdate().
Form_Activate()--Update the menu bar.

Form_Clos&()--Closes the form.

Form_Deactivate()--Update the menu bar.

Form_L oad()--Dynamically resizes the form to the users screen resolution and
then centers it.

Form_Open()--Populates combo boxes. In order to alow the combo boxes to
offer <All> as a choice, 2 methods are needed -- one for integers and another for strings.
The populateComboBoxWillAll() subroutine is used for integers (like the Mishap Year),

while stored procedures are used for strings.

Important to note that the populateComboBoxWillAll() will not work for creating
strings of more than about 50 entries because the combo box rejects them as too, long.
Stored procedures, however, do not suffer from this limitation.

populateComboBoxWithAll()--Makes a connection to the stored procedure
passed-in and builds an string that can be used by a combo box to display and
"INumberCol ToGet" column drop down list. It has to check every record for commas

and semi-colons in the data because the combo box interprets these two characters as

166

delimiters, so they must be replaced with some other character (a™" is what we are using

here).

goGetUpdate()--Builds the input string to pass based on the users combo box
selection and uses this information to query again the underlying recordsource for this
form. This updates the table to show the counts corresponding to the user's combo box
criteria

goGetRecor ds()--Builds the input string to pass to the stored procedure to get the
correct records. Order of these if statements must match the SP. If <All> was selected,
then pass " so that the SP knows the valueis NULL. Once the input string is built, the 2-
0-1-2-frmViewMishaps form is opened.

storeValues()--Store the values of the filter boxes on form open and after every
update so that you have something to compare current values to. This way, you can trap

when users make changes.

checklfFormlsDirty()--If the user changed values in the combo boxes but has
not updated the form, tell him about it and give the option to refresh before viewing
records. If you don't do this, then the user might change the combo box criteria and then
forget to hit the update button before double-clicking one of the boxes. This could create

confusing results.

* DDbIClick()--Private subs-for detecting box double clicks follow. Three
subroutines are needed for each box. One for the label and one form each text box

(number and percentage). This applies to all functions that has _DblIClick on its name.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
gets its own version of this function so that minor adjustments can be made on a form by

form basis.

167

T. VIEW MISHAPS CLASS

<<Form>>
ViewMishaps

=ndCancel_Click()
zymdDone_Click()
zwndPreview_Click()
=orm_Activate()
ekorm_Deactivate()
zworm_Close()
exorm_Load()
zxorm_Open()
tdoveToCenten)

Figure E.20. View Mishaps Class Diagram.

1 Class Description

This class is used to view the mishaps with factors. It does not alow input, edit,
or deletion of data. It is called by both the ExpertQueryForm and the Summary form.
Becuase it is called by two different forms, it has the capability to determine which stored
procedure to use a a record source based on the value of the
Global Declarations.bUseHFACSSummaryQuery global variable.

2. Data Member Description

None.

3. M ethod Description

cmdCancel_Click ()--Saves the state of the data (and size of the form) and closes

the form.
cmdDone_Click ()--Closes the form.
Form_Activate ()--Update the menu bar.

Form_Close ()--Resets the flag used to tell the form which stored procedure to
use for arecord source.

Form_Deactivate ()--Update the menu bar.

168

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centersit.

Form_Open()--Determines which stored procedure to use as a record source
based on the value of the GlobaDeclarations.bUseHFACSSummaryQuery global

variable.

cmdPreview_Click ()--If this program is being run with full-blown Access, this
function opens the Mishap report. If it isbeing run with Runtime Access, then there is no
support for reports and an error message is displayed.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
gets its own version of this function so that minor adjustments can be made on a form by
form basis.

U. EXPERT QUERY CLASS

<<Form>>
ExpertQuery

exorm_Activate()
2gorm_Deactivate()
zgorm_Close()

sendBack Click()
exorm_Load()

ggorm_Open()
zxemdView_Click()
zopulateComboBoxWithAll()
sgloveToCenter()

Figure E.21. Expert Query Class Diagram.

1 Class Description
This form allows the user to choose multiple criteria from a series of combo boxes

and then query the database to open the ViewMishaps form and display the mishaps and
factors.

When the form opens, it populates the combo boxes by running UNION queries
to build the recordsets needed to serve as control sources. This is necessary to add the
169

"<All>" choice. The only exception is the "Year" combo box. It uses a string
manipulation function called populateComboBoxWithAll() to build a value list. Thisis
necessary because the UNION method will only work with noninteger data types. The
problem with the populateComboBoxWithAll() method is that it is limited in size to
about 50 two dimensional entries. In addition, commas and semi-colons create problems

and must be removed from the string during build.

Finally, when the user clicks "View", code is executed that builds the input string
for stored procedure flanCountflanFilteredMishaps which is the recordsource for the
ViewMishaps form. This input string is then passed to the "view" form via a global
variable and the viewMishaps form is opened.

2. Data Member Description
None.

3. Method Description
Form_Activate ()--Update the menu bar.

Form_Deactivate ()--Update the menu bar.
Form_Close ()--Updates the menu bar.
cmdBack_Click ()--Closes the form.

Form_Load ()--Dynamically resizes the form to the users screen resolution and
then centers it.

Form_Open()--Populates combo boxes. In order to allow the combo boxes to
offer <All> as a choice, 2 methods are needed -- one for integers and another for strings.
The populateComboBoxWillAll() subroutine is used for integers (like the Mishap Y ear),
while stored procedures are used for strings. Important to note that the
populateComboBoxWillAll() will not work for creating strings of more than about 50
entries because the combo box rejects them as too, long. Stored procedures, however, do

not suffer from this limitation.

cmdView_Click ()--Builds the input string to pass to the stored procedure to get
the correct records. Order of these if statements must match the SP. If <All> was

selected, then pass " so that the SP knows the value is NULL. Once the input string is
170

built, a stored procedure is run from within this function to determine if there are actually
any records in the database matching the users selections. If no records match, ane error
message is displayed. Otherwise the 2-0-1-2-frm-ViewMishaps form is opened.

populateComboBoxWithAll ()--Makes a connection to the stored procedure
passed-in and builds an string that can be used by a combo box to display and
"INumberCol ToGet" column drop down list. It has to check every record for commas
and semi-colons in the data because these two characters are interpreted by the combo
box as delimiters, so they must be replaced with some other character (a'™" is what we

are using here).

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
gets its own version of this function so that minor adjustments can be made on aform by
form basis.

V. QUERY MENU CLASS

<<Form>>

QueryMenu

'.,deIoseQueryMenu_CIick()

&% mdCloseQueryMenu_MouseMove()
=3 mdExpertQuery_MouseMove()

&3 mdHFACS_MESummary _MouseMove()
eh-orm_Close()

eh-orm_Activate()
eh-orm_Deactivate()

e-orm_Load()

gn-orm_Open()
ZemdCloseQueryMenu_Click()
s=mdExpertQuery_Click()
sloveToCenter()

Figure E.22. Query Menu Class Diagram.

171

1 Class Description
This class is the form for selecting the type of query to run. It has no special

functionality or recordsource.

2. Data Member Description
None.

3. Method Description
cmdCloseQueryMenu_Click ()--Closes the form.

cmdCloseQueryMenu_MouseMove ()--Update text color on the command

buttons in response to mouse over events.

cmdExpertQuery M ouseM ove ()--Update text color on the command buttons in

response to mouse over events.

cmdHFACS MESummary_MouseM ove ()--Update text color on the command

buttons in response to mouse over events.
Form_Close ()--Closes the form.
Form_Activate ()--Update the menu bar.
Form_Deactivate ()--Update the menu bar.

Form_Load ()--Dynamically resizes the form to the users screen resolution and

then centersit.

Form_Open ()--Updates the menu bar and sets the focus to the first command

button, setting its color to blue.
cmdCloseQueryMenu_Click()--Opens the Summary form.
cmdCloseQueryMenu_Click()--Opens the ExpertQueryForm form.

MoveT oCenter ()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
gets its own version of this function so that minor adjustments can be made on a form by

form basis.

172

W. REPORT CLASS

<<Form>>

Report

cmdCloseReportMenu_ Click()
cmdAll_Click()

&% cmdAircraft_Click()

=% cmdClass_Click()

&=x cmdLocation Click()

&% cmdOrganization_Click()
24 cmdType_Click()

= cmdYear_Click()

&y cmdChron_Click()
Form_Close()

4 Form_Activate()
Form_Deactivate()
Form_Load()

| Form_Open()

2 MoveToCenter()

Figure E.23. Report Class Diagram.

1 Class Description

This class is the form for selecting the type of report to run.
2. Data Member Description

None.

3. M ethod Description

cmdCloseReportMenu_Click ()--Closes the form.

cmdAll_Click ()--Launch the report for al field values in response to command

button click event.

cmdAircraft_Click ()--Launch the report for sorting by aircraft reports in response

to command button click event.

cmdClass_Click ()--Launch the report for sorting by Class reports in response to
command button click event.

173

cmdLocation_Click ()--Launch the report for sorting by location reports in

response to command button click event.

cmdOrganization_Click ()--Launch the report for sorting by organization reports

in response to command button click event.

cmdType_Click ()--Launch the report for sorting by type reports in response to

command button click event.

cmdYear_Click ()--Launch the report for sorting by year reports in response to

command button click event.

cmdChron_Click ()--Launch the report for sorting by chronology reports in

response to command button click event.
Form_Close ()--Closes the form.
Form_Activate ()--Update the menu bar.
Form_Deactivate()--Update the menu bar.

Form_Load()--Dynamically resizes the form to the users screen resolution and

then centersit.

Form_Open()--Updates the menu bar and sets the focus to the first command

button, setting its color to blue.

MoveToCenter()--Centers the form on the screen. Using the ezSizeForm class
breaks Access's built-in autocenter function, so this method is needed to fix it. Each form
getsits own version of this function so that minor adjustments can be made on a form by

form basis.

174

APPENDIX F. BUSINESSLOGIC COMPONENT CODE

Class-clForm Window

Option Compare Database
Option Explicit

TR AR A KK A AR A IR A KR A IR A IR A IR A I A A h kA hkhkhkkhkhkkhkhkkkhkkkkkx

' Type declarations
TR AR A KK A AR A AR A IR A IR A IR A IR A IR A Ak Ak khkhkhkhkkhkhkkhkhkkkkkx
Private Type RECT 'RECT structure used for API calls.
Left AsLong
Top AsLong
Right AsLong
Bottom As Long
End Type

Private Type POINTAPI 'POINTAPI structure used for API
calls.

X AslLong

Y AslLong
End Type

KA AR A AR A KR A IR A IA KR A IR A IR A AR A I A Ak Ak khkhkhkhkkhkhkkkhkkhkkx

' Member variables

TR A KA AR AR A IR A A A IR A IR A A I A Ak hkhkhkhkhkhkkhhkhkhkkhhkhhhxx
Privatem_hWnd AsLong ‘Handle of the window.
Privatem_rctWindow AsRECT 'Rectangle describing the
sides of the last polled location of the window.

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkkhkhkhkhkhkkkhkhkhkhkkhkkkhkkkkx

' Private error constants for use wi th RaiseError procedure
Thkkkhkkhkhkhkhhkhkhkhhhkhkhhhhhkhkhhhhhhkhkhhkhhhkhhkhhkhhhkhhkhhxk
Private Const m_ERR_INVALIDHWND =1

Private Const m_ERR_NOPARENTWINDOW = 2

TR AR A KK A KR A KR A IR A IR A IR A IR A I A A Ak Ak khkhkkhkhkkhkhkkkhkkkkkx

" API function declarations

TRA KK A KK A KR A KRNI IR A KA AR A RN A A Ak hkkhkhkhkhkhkkhkhkhkkhkhkkhkxx
Private Declare Function apilswWindow Lib "user32" Alias
"IsWindow" (ByVa hwnd AsLong) AsLong

Private Declare Function apiMoveWindow Lib "user32"
Alias"MoveWindow" (ByVa hwnd AsLong, ByVd X As
Long, Byva Y AsLong, _

ByVad nWidth As Long, ByVd nHeight AsLong, ByVva
bRepaint As Long) As Long

'‘Moves and resizes a window in the coordinate system of
its parent window.

Private Declare Function apiGetWindowRect Lib "user32"
Alias "GetWindowRect" (ByVa hwnd As Long, IpRect As
RECT) AsLong

'After calling, the IpRect parameter contains the RECT
structure describing the sides of the window in screen
coordinates.

Private Declare Function apiScreenToClient Lib "user32"
Alias"ScreenToClient" (ByVa hwnd AsLong, IpPoint As
POINTAPI) As Long

'Converts |pPoint from screen coordinates to the
coordinate system of the specified client window.

175

Private Declare Function apiGetParent Lib "user32" Alias
"GetParent" (ByVa hwnd AsLong) AsLong

'Returns the handle of the parent window of the specified
window.

' CLASS DESCRIPTION

'ClassName: clFormWindow.bas

'‘Author: Pat Flanders & Scott Tufts

'Description: Moves and resizesawindow in the coordinate
system
' of its parent window.

'References. None

Ykkkkkkkkhkkkkhkkkkhkkkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx

' FUNCTIONS

Tkkkkkkkkkkkkhkkkhkkhkkhkkkhkhkkhhkhkkhhkkkhkhkkhkhkhkhkhkhkhkhkkkxkx

'Function/Sub Name: RaiseError()

'Description: Raises a user-defined error to the calling
procedure.

'Input: None
'‘Output: None

'References. None

Private Sub RaiseError(ByVal IngErrNumber As Long,
ByVal strErrDesc As String)

ERR.Raise vbObjectError + IngErrNumber,
"clFormWindow", strErrDesc

End Sub

'Fundion/Sub Name: UpdateWindowRect()

'‘Description: Places the current window rectangle position (in
'pixels, in coordinate system of parent window) in
m_rctWindow.

'Input: None

'‘Output: None

'References. None

Private Sub UpdateWindowRect()
Dim ptCorner As POINTAPI

If m_hWnd = 0 Or apilswWindow(m_hwnd) Then
api GetWindowRect m_hWnd, m_rctWindow
'm_rctWindow now holds window coordinates in screen
coordinates.

If Not MeParent IsNothing Then
'If there is a parent window, convert top, left of
window from screen coordinates to parent window
coordinates.
With ptCorner
X = m_rctWindow.L eft
.Y =m_rctWindow.Top
End With

apiScreenToClient Me.Parent.hwnd, ptCorner

With m_rctWindow
.Left = ptCorner.X
.Top = ptCorner.Y

End With

'If there is a parent window, convert bottom, right of
window from screen coordinates to parent window
coordinates.

With ptCorner

X = m_rctWindow.Right
.Y = m_rctWindow.Bottom
End With

apiScreenToClient Me.Parent.hwnd, ptCorner

With m_rctWindow
.Right = ptCorner.X
.Bottom = ptCorner.Y
End With
End If
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hwWnd & " isno longer valid."
End If

End Sub

" Public readwrite properties follow

Public Property Get hwnd() AsLong
'Returns the value the user has specified for the window's
handle.

If m_hwWnd = 0 Or apilswindow(m_hWnd) Then
hwnd =m_hwnd
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Let hwnd(ByVal IngNewVaue As Long)

176

'Sets the window to use by specifying its handle.
'Only accepts valid window handles.

If IngNewVaue = 0 Or gpilswindow(IngNewVaue) Then
m_hWnd = IngNewVaue
Else
RaiseError m_ERR_INVALIDHWND, "Thevalue
passed to the hWnd property is not avalid window handle."
End If

End Property

Public Property Get Left() AsLong
'Returns the current position (in pixels) of the left edge of the
window in the coordinate system of its parent window.

If m_hwWnd = 0 Or apilsWindow(m_hWnd) Then
UpdateWindowRect
Left = m_rctWindow.Left
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Let Left(ByVa IngNewVaue As Long)
'Moves the window such that its|eft edge falls at the position
indicated

'(measured in pixels, in the coordinate system of its parent
window).

If m_hwnd = 0 Or apilswindow(m_hWnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hWnd, IngNewVaue, .Top,
.Right - .L€ft, .Bottom - .Top, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Get Top() AsLong
'Returnsthe current position (in pixels) of thetop edge of the
window in the coordinate system of its parent window.

If m_hwnd = 0 Or apilsWindow(m_hwWnd) Then
UpdateWindowRect
Top=m_rctWindow.Top
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property
Public Property Let Top(ByVa IngNewVaue As Long)

'Moves the window such that its top edge falls at the position
indicated

'(measured in pixels, in the coordinate system of its parent
window).

If m_hwWnd = 0 Or apilswindow(m_hWnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hwnd, .Left, IngNewVaue,
.Right - .Left, .Bottom - .Top, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Get Width() AsLong
'Returns the current width (in pixels) of the window.

If m_hwnd = 0 Or apilsWindow(m_hwWnd) Then
UpdateWindowRect
With m_rctWindow
Width = .Right - .Left
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Let Width(ByVa IngNewVaue As Long)
'Changes the width of the window to the value provided (in
pixels).

If m_hwnd = 0 Or apilsWindow(m_hwWnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hWnd, .L€ft, .Top,
IngNewValue, .Bottom - .Top, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Get Height() AsLong
'Returns the current height (in pixels) of the window.

If m_hwnd = 0 Or apilsWindow(m_hWnd) Then
UpdatewindowRect
With m_rctWindow
Height = .Bottom- .Top
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Let Height(ByVa IngNewVaue As Long)
'‘Changesthe height of the window to the value provided (in
pixels).

If m_hwnd = 0 Or apilswindow(m_hWnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hWnd, .Lé&ft, .Top, .Right - .Left,
IngNewVaue, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

' Public read-only propertiesfollow

Public Property Get Parent() As clFormWindow
'Returns the parent window as a clFormwWindow object.
'For forms, this should be the Access MDI window.

Dim fwParent As New clFormwWindow
Dim IngHWnd As Long

If m_hwWnd =0 Then
Set Parent = Nothing
Elself apilsWindow(m_hWnd) Then
IngHWnd = api GetParent(m_hWnd)
fwParent.hwnd = IngHWnd
Set Parent = fwParent
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hwWnd & " isno longer valid."
End If

Set fwParent = Nothing

End Property

177

CL ASS-CloseCommand

Option Compare Database
Option Explicit

' CLASS DESCRIPTION

'ClassName: CloseCommand.bas

'Author: Pat Flanders & Scott Tufts. Adapted from the
Microsoft
'knowledgebase.

'Description: Disables the Access close button on the base
Access
‘application window.

'References. None

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

DECLARES
A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx
Private Declare Function GetSystemMenu Lib "user32"
(Byva hwnd AsLong, _
ByVa bRevert AsLong) AsLong

Private Declare Function EnableMenultem Lib "user32"
(ByvVa hMenuAs_

Long, ByVa wiDEnableltem As Long, ByVa wEnable As
Long) AsLong

Private Declare Function GetMenulteminfo Lib "user32"
Alias _

"GetMenulteminfoA" (ByVa hMenu AsLong, ByVa un
AsLong, ByVa bAs_

Long, IpMenulteminfo As MENUITEMINFO) AsLong

Private Type MENUITEMINFO
cbSize AsLong
fMask AsLong
fType AsLong
fState AsLong
wiD AsLong
hSubMenu AsLong
hbmpChecked AsLong

178

hbmpUnchecked AsLong
dwltemData As Long
dwTypeData As String
cch AsLong

End Type

Const MF_GRAYED = &H1&
Const MF_BYCOMMAND = &HO0&
Const SC_CLOSE = &HF060&

Tkkkkhkhkhkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkkkkk

' PUBLIC PROPERTIES

Tkkkkhkhkhkhkkhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhkkkkkk

Public Property Get Enabled() As Boolean
Dim hwnd As Long
Dim hMenu AsLong
Dim result AsLong
Dim Ml AsMENUITEMINFO

Ml.cbSize = Len(MI)
MI.dwTypeData = String(80, 0)
Ml.cch = Len(MI.dwTypeData)
MI.fMask = MF_GRAYED
MI.wID = SC_CLOSE
hwnd = Application.nWndAccessApp
hMenu = GetSystemMenu(hwnd, 0)
result = GetMenultemInfo(hMenu, M1.wID, 0, MI)
Enabled = (M|.fState And MF_GRAYED) = 0
End Property

Public Property Let Enabled(bool Close As Boolean)
Dim hwnd As Long
Dim wFags AsLong
Dim hMenu AsLong
Dimresult AsLong

hwnd = Application.n\WndAccessApp
hMenu = GetSystemMenu(hwnd, 0)
If Not boolClose Then
wHags=MF_BYCOMMAND Or MF_GRAYED
Else
wHFlags=MF_BYCOMMAND And Not MF_GRAYED
End If
result = EnableMenultem(hMenu, SC_CL OSE, wHags)
End Property

FORMCLASS-1-0-0-1-frm-SelectMishap

Option Compare Database
Option Explicit

FORM DESCRIPTION

'Class Name: 1-0-0-0-frm-SelectMishap

'‘Author: Pat Flanders & Scott Tufts

‘This classisdisplays dl the Mishaps in the database an
alowsthe

'user to sort them by various fieldsin order to select amishap
'to view or edit. It has buttons that allow initiation of anew
'‘Mishap or deletion of an existing mishap.

'References:

- 1-0-0-1-subFrm-SelectMishgp
' - clFormWindow

- ez_SizingFunctions
' - GlobaDeclarations

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

FUNCTIONS

TRA AR A IR A IR A IR AR A I h A Ak hhkkhhkhkhhkkhhkkhkhkkhkhhkxhkkx

'Function/Sub Name: cmdDone_Click()
:Deacription: Closestheform.

'Input: None

:Output: None

'References. None

Private Sub cmdDone_Click()
DoCmd.Close acForm, "1-0-0-0-frm-SelectMishap"

End Sub

'Function/Sub Name: cmdViewMishap_Click()

:D@cri ption: Opens the mishap selected in the subform.
'Input: None

:Ouput: None

'References: Globa Declarations.gLngMishapToGet isa

global variable
'holding the value of the mishap ID

Private Sub cmdViewMishap_Click()

179

On Error GoTo errorHandler
Global Declarations.gLngMishapToGet =
MeManage Mishaps.Form![Mishapl D]
Me. TxtGloba Focus.Vaue =
Globa Declarations.gLngMishapToGet
MeVisble = False

DoCmd.OpenForm "1-0-0-2-frm-EditMishap”
Exit Sub

errorHandler:

DoCmd.Beep

MsgBox "There are no Mishapst o select!", vbOKOnly +
vbExclamation, "Error"

End Sub

:Function/Sub Name: cmdAdd_Click()
:Dacri ption: Opens the add mishap wizard.
:Input: None

:Output: None

'References. None

Private Sub cmdAdd_Click()

MeVisble=Fase
DoCmd.OpenForm "1-0-0-5-frm-AddMishap"

End Sub

'Function/Sub Name: ecmdKill_Click()

:Deﬂ:ri ption: Deletes the mishap selectedin the subform.
‘Input: None

:Output: None

'References: Global Declarations.gLngMishapToGet isa

global variable
'holding the value of the mishap ID

Private Sub cmdKill_Click()
On Error GoTo errorHandler

'Store the value of the mishap selected in the subformina

‘global variable.

GlobalDeclarations.gLngMishapToGet =
Me.Manage_Mishaps.Form![Mishapl D]

'Also, store it in atext box.
Me.TxtGlobal Focus.Vaue =
Global Declarations.gL ngMishapToGet

Dim response As Variant

DoCmd.Beep
response = MsgBox("Y ou are about to permanently delete
therecord for MISHAP#' & Me. TxtGlobalFocus.Vaue& "
and al itsrelated Factors." & Chr(13) & Chr(13) & "ltis
STRONGLY recommended that you do not delete mishaps
from the database because thisremoves all references of
them." & Chr(13) & Chr(13) & "Do you want to delete this
Mishap record despite thiswarning?', vbY esNo +
vbQuestion + vbDefaultButton2, "Permanently Delete
Mishap?")
If response = vbY es Then
'Declare objects for querying a stored procedure to get
the new record
Dim rsTheNewMishgp As New Recordset

Dim commandADO As New ADODB.Command
Dim conADO As New ADODB.Connection

' This is where we create the Connection object.
Set conADO = CurrentProject.Connection

rsTheNewMishap.Open "DELETE tblMishaps WHERE
tbiMishaps.MishaplD=" & Me.TxtGlobal Focus.Vaue,
conADO, , , adCmdText

'‘Destroy objects used for t he query

Set commandADO = Nothing

Set conADO = Nothing

Set rsTheNewMishap = Nothing

Me.Manage Mishaps.Requery

End If

Exit Sub
errorHandler:
DoCmd.Beep

MsgBox "There are no MishapDates to deletd”, vbOK Only
+ vbExclamation, "Error"

End Sub

'Function/Sub Name: Form_Activate()

'Description: Update the menu bar and see if the subform
needsto

'be refreshed.

'Input: None

‘Output: None

'References: None

Private Sub Form_Activate()

'Disable database replacement if not logged-in as local.

180

Dim bTemp As Boolean
If GlobalDeclarations.gStrServerName = "(local)" Then
bTemp=
CommandbarEnable(CommandBars("mnuAdmin™), True, 2)
Else
bTemp =
CommandbarEnable(CommandBars("mnuAdmin"), Fase, 2)
End If
Application.CommandBars("mnuAdmin”).Visible = True

'Refresh the form if returning from a process that made it
dirty.
If Global Declarations.gFormNeedsRefresh = True Then
MeManage_Mishaps.Requery
Global Declarations.gFormNeedsRefresh = False
End If

End Sub

:Functi on/Sub Name: Form_Close()
:Deﬂ:ription: Closesthe form.
:Input: None

:Output: None

'References. None

Private Sub Form_Close()
Application.CommandBars("mnuProgramMain").Visible =
True
Formsl[MainMenu].Visible = True

End Sub

:Functi on/Sub Name: Form_Deectivate()
:Descri ption: Updates the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Deactivate()
Application.CommandBars("mnuAdmin").Visible = False
End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

'‘Output: None

'References:
- ezSizeForm

Private Sub Form_L oad()
'‘Dynamically resize the form based on screen resolution.
ezSizeForm Me, -1
MoveToCenter "1-0-0-0-frm-SelectMishap”

End Sub

'Function/Sub Name: Form_Open()

'Description: Updates the menu bar and sets the MainMenu
formto

'invisible so that the screeniseasier to view.

‘Input: None

‘Output: None

'References. None

Private Sub Form_Open(Cancel As Integer)

'Disable database replacement if not logged-in as local.
Dim bTemp As Boolean
If GlobalDeclarations.gStrServerName = "(local)" Then
bTemp =
CommandbarEnable(CommandBars("mnuAdmin®), True, 2)
Else
bTemp=
CommandbarEnable(CommandBars("mnuAdmin'), False, 2)
End If
Application.CommandBars("mnuAdmin").Visible = True

Formsl[MainMenu].Visible = False
On Error Resume Next

Me. TxtGloba Focus.Vaue =
Global Declarations.gLngMishapToGet

DoCmd.GoToControl "Manage Mishaps'

End Sub

181

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeFom

'class bresks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
'Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top- .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

'Function/Sub Name: Label127_DblIClick()

'Description:
provided.

Easter Egg Code. No further explanation

'Input: None
‘Output: None

'References. None

Private Sub Label127_DblClick(Cancel As Integer)
DoCmd.OpenForm "EasterEgg"
End Sub

FORMCLASS-1-0-0-1-subfrm-SelectMishap

Option Compare Database
Option Explicit

FORM DESCRIPTION

'ClassName: 1-0-0-1-subfrm-SelectMishap

'‘Author: Pat Flanders & Scott Tufts

‘Thisclassis used in aform/subform relationship with the
'1-0-0-0-frm-SelectMishap form. It displays the mishapsin a
'sortable order.

'References:

- clFormWindow
' - ez_SizingFunctions
- GlobalDeclarations

TR AR A KK A KK A IR A AR A IR A IR A IR A I A A h Ak Ak khkhkkhkhkkhkhkkkhkkkkkx

FUNCTIONS

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

'Function/Sub Name: Form_Open()

'‘Description: Sets color values for the columnsin the form as
Yz\;\lsdilnitial sort order.

:Input: None

'Output: None

'References. None

Private Sub Form_Open(Cancel As Integer)

Me.tgl Decending.Vdue=0

Me.OrderBy = "[MishgpDate] ASC"
Me.MishapDate.ForeColor = RGB(10, 140, 50)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type FK.ForeColor = RGB(0, 0, 0)
MeMishapl D.ForeColor = RGB(0, 0, 0)

End Sub

'Function/Sub Name: Frame97_AfterUpdate()

'Description: Logic module that reacts to radio button clicks.
Sorts

'the data on the form in the order specified.

‘Input: None

'Output: None

'References. None

Private Sub Frame97_AfterUpdate()

If MeFrame97 = 1 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[MishapDate] DESC"
Else
Me.OrderBy ="[MishapDate] ASC"
End If
Me.MishapDate.ForeColor = RGB(10, 140, 50)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 2 Then
If MetglDecending.Value =-1Then
MeOrderBy = "[OrglD_FK] DESC"
Else
Me.OrderBy ="[OrgID_FK] ASC"
End If
MeMishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(10, 140, 50)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor=RGB(0, 0, 0)
Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If MeFrame97 = 3 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Aircraft_FK] DESC"
Else
Me.OrderBy = "[Aircraft_FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
Me.Class FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 4 Then
If Me.tglDecending.Value =-1Then
Me.OrderBy = "[Class FK] DESC"
Else
Me.OrderBy ="[Class FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(10, 140, 50)
Me.Locationl D_FK.ForeColor = RGB(0, 0, 0)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If MeFrame97 =5 Then
If MetglDecending.Value =-1Then

Me.OrderBy = "[MishapLocation] DESC"
Else
Me.OrderBy = "[MishapLocation] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
MeAircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(10, 140, 50)
Me.Type FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 6 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Type_FK] DESC"
Else
Me.OrderBy = "[Type FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(10, 140, 50)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 7 Then
If Me.tglDecending.Value =-1Then
Me.OrderBy = "[Mishapl D] DESC"
Else
Me.OrderBy = "[MishaplD] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.Locationl D_FK_.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(10, 140, 50)
End If

End Sub

'Function/Sub Name: IbIMore_Click()

'‘Description: Reactsto the click of the "More..." box in each

row
'of the data in the form. Opens aform that displays amore
detailed

‘description of the mishap becauise these descriptions are too

big
'tofit in the datagrid of the form.

'Input: None
'‘Output: None

'References:
' - 1-0-0-3-PopUpFrm-MishapDescription

Private Sub IbiMore_Click()
gStrDescription = Me.lblDescription.Vaue
DoCmd.OpenForm "1-0-0-3-PopUpFrm-
MishapDescription”

End Sub

'Function/Sub Name: t glDecending_AfterUpdate()
'Description: Logic module that sortsthe dataon the formin
‘acending or descending order based on the state of the toggle
button.

'Input: None

‘Output: None

'References. None

Private Sub tglDecending_AfterUpdate()

If MeFrame97 = 1 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[MishapDate] DESC"
Else
Me.OrderBy = "[MishapDate] ASC"
End If
Me.MishapDate.ForeColor = RGB(10, 140, 50)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 2 Then
If MetglDecending.Vaue=-1Then
Me.OrderBy = "[OrgID_FK] DESC"
Else
Me.OrderBy ="[OrgID_FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(10, 140, 50)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationID_FK.ForeColor = RGB(0, 0, 0)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 3 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Aircraft FK] DESC"
Else
Me.OrderBy = "[Aircraft_FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 =4 Then
If MetglDecending.Vaue=-1Then
Me.OrderBy = "[Class FK] DESC"
Else
Me.OrderBy ="[Class FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)

Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
MeAircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(10, 140, 50)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 =5 Then
If Me.tglDecending.Value =-1Then
Me.OrderBy = "[MishapL ocation] DESC"
Else
Me.OrderBy = "[MishapLocation] ASC"
End If
MeMishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Airaaft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationID_FK.ForeColor = RGB(10, 140, 50)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 6 Then
If Me.tglDecending.Vaue =-1Then
Me.OrderBy = "[Type FK] DESC"
Else
Me.OrderBy = "[Type FK] ASC"

184

End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
MeType_FK.ForeColor = RGB(10, 140, 50)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 7 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Mishapl D] DESC"
Else
Me.OrderBy = "[MishaplD] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(10, 140, 50)
End If

End Sub

FORMCLASS-1-0-0-2-frm-EditMishap

Option Compare Database
Option Explicit

FORM DESCRIPTION

'ClassName: 1-0-0-2-frm-EditMishap

'‘Author: Pat Flanders & Scott Tufts

‘Thisclassis used to edit mishaps and add factors. Itis
similar

'to the 2-0-1-2-subFrm-View mishaps class, but offersthe
additional

‘capability to edit the datain the underlying tables.

'References:
- 1-0-0-7-PopUpFrm-CodeMaintenance
' - 1-0-0-4-subFrm-Factors
- clFormWindow
' - ez_SizingFunctions
- GlobalDeclarations

Ykkkkkkkkhkkkkhkkkkhkkkkhkkkhkhkkhkkkhkhkhkkhkhkkkhkhkkhkhkhkkkhkkkkx

' FUNCTIONS

Thkkkhkkkkkhkkkkhkkkhkhkkhkhkhkhhkhkhkhkkhkhhkhkhhkhkhhkkhhkhkkhhkhkkhkkhkxkx

'Function/Sub Name: cmdCancel_Click()

‘Description: Closes the form undoing changesBUT ONLY
for events

'that have not already been refreshed. For example, if you
add

‘afactor, the entire form isrefreshed . . . so clicking cancel
‘cannot undo the addition of thefactor - you haveto usethe
‘delete button. Thisfunction isonly capble of undoing
actions

'made to controlsin the top portion of the form, and then,
only

'if arefresh has not yet been committed.

'Input: None
'Output: None

'References. None

Private Sub cmdCancel_Click()
On Error GoTo Err_CmdCancel_Click

DoCmd.DoM enultem acFormBar, acEditMenu, acUndo, ,
acMenuvVer70

DoCmd.Close

Exit_CmdCancel_Click:
Exit Sub

185

Err_CmdCancel_Click:
DoCmd.Close

End Sub

:Functi on/Sub Name: cmdCodeMaintenance_Click()
:Dacri ption: Opens the code maintenance form.

:I nput: None

‘Output: None

'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance

Private Sub cmdCodeMaintenance_Click()
DoCmd.OpenForm "1-0-0-7-PopUpFrm-

CodeMaintenance’

End Sub

:Functi on/Sub Name: cmdSave_Click()

'‘Description: Savesthe state of the data and closes the form.
:Input: None

'‘Output: None

'References. None

Private Sub cmdSave_Click()
On Error GoTo Err_Blanks:
DoCmd.Requery

Exit_cmdSave:

DoCmd.Close
Exit Sub

Err_Blanks:
GoTo Exit_cmdSave

End Sub

'Function/Sub Name: Form_Activate()

'Description: Update the menu bar.

'Input: None
‘Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuOther").Visible = True
End Sub

:Functi on/Sub Name: Form_Close()
'Description: Closes the form.
:Input: None

'‘Output: None

'References. None

Private Sub Form_Close()
Forms![1-0-0-0-frm-SelectMishap].Visible = True
End Sub

'Function/Sub Name: Form_Deactivate()
:D&cri ption: Updates the menu bar.
'Input: None

:Output: None

'References. None

Private Sub Form_Deactivate()
Application.CommandBars("mnuOther").Visible = Fase
End Sub

'Function/Sub Name: Form_Dirty()

'‘Description: If changes are made to the mishap displayed in
thisform

‘then the 1-0-0-0-frm-SelectMishap form will need to be
updated when

‘thisformisclosed. Thisfunction flagsaglobal variable so
that

‘when the 1-0-0-0-frm- SelectMishap form is reactivated, it
refreshes

'to display the changes.

'Input: None
'‘Output: None

'References. None

Private Sub Form_Dirty(Cancel As Integer)
'MsgBox "The form is now dirty"
Global Declarations.gFormNeedsRefresh = True
End Sub

186

'Function/Sub Name: Form_Load()

'Description: Dynamically resizestheform to the users
screen

'resolution and then centersit.

‘Input: None

‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-2-frm-EditMishap"
End Sub

'Function/Sub Name: Form_Open()

'Description: If thisform isopened from the 1-0-0-5-frm-
AddMishap

'then the record that was just added needsto be viewed in this
form

‘otherwise, it will display the record passed to it in the

'Global Declarations.gLngMishapToGet global variable.
'Input: None

‘Output: None

'References:
' - Globa Declarations

Private Sub Form_Open(Cancel As Integer)
Application.CommandBars("mnuCther").Visible = True

'Set the unique table for the underlying stored procedure
with code

'becuase it sometimes dissapears when using the visual
property sheet.

Me.UniqueTable = "tbIMishaps’

'Check to seeif you are coming here from the Add Mishap
Wizard or just
'from the select mishap form.
If Globa Declarations.gBInAddAMishap = True Then
DoCmd.Close acForm, "1-0-0-5-frm-AddMishap”
Globa Declarations.gBInAddAMishap = False

'Declare objects for querying a stored procedure to get
the new record

Dim rsTheNewMishap As New Recordset

Dim commandADO As New ADODB.Command

Dim conADO As New ADODB.Connection

' Thisis where we create the Connection object.
Set conADO = CurrentProject.Connection

'Figure out what record was just added

rsTheNewM ishap.Open "SELECT max(Mishapl D)
FROM tblMishaps', conADO, , , adCmdText

rsTheNewMishap.MoveFirst

GlobalDeclarations.gLngMishapToGet =
rsTheNewMishap.Fields(0)

'‘Destroy objects used for the query
Set commandADO = Nothing

Set conADO = Nothing

Set rsTheNewMishap = Nothing

'Set the inputparameters for opening the form
Me.InputParameters =" @MishapID int=" &
Global Declarations.gl ngMishapToGet

'Set the Titlein the form header
MetxtTitleVaue = [MishaplD] & "-" & [OrgName] &
" -" & [Aircraft_FK]
Else
‘Thisisanorma edit (not an add)
'Set the inputparameters for opening the form
Me.InputParameters =" @MishapID int=" &
Global Declarations.gL ngMishapToGet

'Set the Titlein the form header
MetxtTitleVaue=[MishaplD] & "- " & [OrgName] &
" -" & [Aircraft_FK]
End If

End Sub

:Functi on/Sub Name: cmdPreview_Click()
:D&ecripti on: Opensthe Mishap Snapsha report.
:Input: None

:Output: None

'References:
' - 1-0-MishapSnapshot-OpenMishaps

Private Sub cdPreview_Click()
On Error GoTo startError
Me.Refresh

Globa Declarations.gLngMishapToGet = Me.txtMishapl D

187

DoCmd.OpenReport " 1-0-MishgpSnapshot -
OpenMishaps', acViewPreview

exitSub:
Exit Sub
startError:

MsgBox "Y ou must have adefault printer installed in
order to preview reports.”, vbCritical + vbOKOnly, " Carit
Find A Printer"

End Sub

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method isneeded to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
‘Output: None

'References:
' - clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-1-0-0-3-PopUpFrm-MishapDescription

Option Compare Database
Option Explicit

FORM DESCRIPTION

'Class Name: 1-0-0-3-PopUpFrm-MishapDescription
'‘Author: Pat Flanders & Scott Tufts
‘Thisclassis

'References:
- clFormWindow

' - ez_SizingFunctions
- Globa Declarations

B

Tkhk Ak A AK KKK KKK A KKK IR A IR A I A I A A h kA dhkhkdhkhkhkkhkhkkhkhkhkkkx

FUNCTIONS

TkhkkKkhAKAAKA AR KKK A IR A IR A Ik A I A A dhkhkhhkhkhhkhkhkhkhkhkhkhkkkx

'Function/Sub Name: cmdDone_Click()
:Description: Closestheform.

'Input: None

:Output: None

'References. None

Private Sub cmdDone_Click()

DoCmd.Close acForm, "1-0-0-3-PopUpFrm-
MishapDescription”
End Sub

'Function/Sub Name: Form_Activate()

'Description: Update the menu bar.

'Input: None
'‘Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuOther").Visible = True
End Sub

'Function/Sub Name: Form_Deectivate()

188

'Description: Updates the menu bar.
'Input: None
'‘Output: None

'References. None

Private Sub Form_Desactivate()
Application.CommandBars("mnuOther").Visible = Fase
End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersiit.

'Input: None

'‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-3-PopUpFrm:
MishapDescription”
End Sub

'Function/Sub Name: Form_Open()

'Description: Updates the menu bar and sets shows the value
of the

‘description for the mishap stored in the

Global Declarations.gStrDescription

‘globd variable.

'Input: None
'‘Output: None

'References:
- GlobalDeclarations

Private Sub Form_Open(Cancel As Integer)
Application.CommandBars("mnuOther").Visible = True
Me.txtDescription = Global Declarations.gStrDescription

End Sub

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
'‘Output: None

'References:
- clFormWindow

189

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwiForm = Nothing

End Sub

FORM CLASS-1-0-0-4-subfrm-Factors

Option Compare Database
Option Explicit

FORM DESCRIPTION

'Class Name: 1-0-0-4-subfrm-Factors
'Author: Pat Flanders & Scott Tufts

"This classis used in aform/subform relationship with the
'1-0-0-2-frm-EditMishap form to display, add, and delete
factors

'to amishap.

'References:
' - 1-0-0-2-frm-EditMishap
' - clFormWindow

- ez_SizingFunctions
- Global Declarations

TR AR A KK A KR A IR A AR A IR A IR A IR A I A Ak Ak khkhkkhkhkkhkhkkhkhkkkkkx

FUNCTIONS

TRk Ak AR AR IR KA A A AR A IR A IR Ah Ak Ak hkhkhkhkkhkhkhkkhkhkkhkhkkhkxkx

'Function/Sub Name: cmdAddFactor_Click()

'‘Description: Adds a blank factor to the mishap indicated by
'tgleobei Declarations.gLngMishapToGet global variable.
:Input: None

:Output: None

'References:
' - GlobalDeclarations

Private Sub cmdAddFactor_Click()
On Error GoTo Err_cmdAddFactor_Click

DoCmd.SetWarnings (False) "'Turn off warning messages
Me.AllowAdditions = True 'Toggle the form to allow
addition of records

DoCmd.GoToRecord , , acNewRec 'Create a new record

MeitxtMishapl D.Value =
Global Declarations.gL ngMishapToGet 'Set the value of the
Mishap

Me.txtFactorSummary.Value = "Please enter a short
summary description of the Factor."

190

Me.cbo3rdLevel Code.Vaue = "UNK"

DoCmd.DoMenultem acFormBar, acRecordsMenu,
acSaveRecord, , acMenuVer70 'Save the record

Me.AllowAdditions = False "Toggle back to not allow
addition of records

Me.Refresh 'Refresh so the user can see the changes

Me.Recordset.Movelast ‘Move to the record just created

DoCmd.SetWarnings (True)

Exit_cmdAddFactor_Click:
Exit Sub

Err_cmdAddFactor_Click:

MsgBox ERR.Description
Resume Exit_cmdAddFactor_Click

End Sub

:Functi on/Sub Name: cmdDelFactor_Click()
'Description: Deletes the factor with the current focus.
:Input: None

‘Output: None

'References. None

Private Sub cmdDel Factor_Click()
On Error GoTo Err_cmdDelFactor_Click

‘Uncomment this Code to add constraints to ensure at -least
1 Factor per Mishap

'If MetxtRecordCount.Vaue =1 Then

' DoCmd.Beep

' MsgBox "Every project must have at least one Factor.
You can't delete the last Factor, but you can modify it.",
vbOKOnly + vbExclamation, "Y ou Must Have One Factor"

' GoTo Exit_cmdDe Factor_Click

'End If

DoCmd.DoMenultem acFormBar, acEditMenuy, 8, ,
aMenuvVer70

DoCmd.DoMenultem acFormBar, acEditMenu, 6, ,
acMenuvVer70

Exit_cmdDelFactor_Click:
Exit Sub

Err_cmdDelFactor_Click:
MsgBox ERR.Description
Resume Exit_cmdDel Factor_Click

End Sub

FORMCLASS-1-0-0-5-frm-AddMishap

Option Compare Database
Option Explicit

' FORM DESCRIPTION

'Class Name: 1-0-0-5-frm-AddMishap
'Author: Pat Flanders & Scott Tufts

"Thisclassisawizard used to add Mishaps to the database.
The

'illusion of many formsis created using a TAB control on the
form

‘and setting the "tab sytle" property to "None". THISIS
IMPORTANT.

"The only way to edit the other pages of the tab control isto
'set the tab property to "Tabs" when theformisin design
view

‘and then change it back to "None" when finished. If you
don't

'do this, you cannot edit any of the pages of the wizard except
‘thefirst one.

'After amishap is added, the 1-0-0-2-frm-EditMishap form is
‘opened with the newly added Mishap selected for editing.
This

‘allows the user to immediately add Factors without having to
'go back to the main menu.

'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance
' - 1-0-0-2-frm-EditMishap
- clFormWindow
' - ez_SizingFunctions
- GlobalDeclarations

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkkkhkkkkx

' FUNCTIONS

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkhkkhkhkhkkhkhkhkhkhkhkhkhkhkkkhkkkkx

'Function/Sub Name: cmdBack_Click()

'Description: Switches form focus back onetab in the tab
view

‘control.

'Input: None

‘Output: None

'References. None

Private Sub cmdBack_Click()

Me.cmdFinish.Enabled = False
DoCmd.GoToControl "Pagel”

191

Me.cmdBack.Enabled = False
Me.cmdNext.Enabled = True

End Sub

:Functi on/Sub Name: cmdCancel_Click()
'Description: Closes the form undoing changes.
:Input: None

:Output: None

'References. None

Private Sub cmdCancel_Click()
On Error GoTo Err_CmdCancel_Click

DoCmd.DoMenultem acFormBar, acEditMenu, acUndo, ,
acMenuVer70

Formdl[1-0-0-0-frm-SelectMishap].Visible= True
DoCmd.Close

Exit_CmdCancel_Click:
Exit Sub

Err_CmdCancel_Click:
DoCmd.Close

End Sub

'Function/Sub Name: cmdBack_Click()

'‘Description: Switchesform focus forward one tab in the tab
view

‘control.

'Input: None

'‘Output: None

'References. None

Private Sub cmdNext_Click()

Me.cmdFinish.Enabled = True
Me.cmdBack.Enabled = True

DoCmd.GoToControl "Page2"
Me.cmdNext.Enabled = False

End Sub

'Function/Sub Name: cmdFinish_Click()

'Description: Adds t he mishap to the database and opens the
edit
'form so that the user can add factors.

'Input: None
'Output: None

'References:
' - 1-0-0-2-frm-EditMishap

Private Sub cmdFinish_Click()
On Error GoTo startError

'Set the database type from the global variable
Me.txtDatabaseType.Vaue =
GlobalDeclarations.gStrTypeDB

'If thereisaproblem, make it "M" as a default
If Me.txtDatabaseType.Vaue <> "M" Or
MetxtDatabaseType.Vaue<>"C" Then
Me.txtDatabaseType Vaue="M"
End If

'Save the record
DoCmd.DoMenultem acFormBar, acRecordsMenu,
acSaveRecord, , acMenuVer70

‘Note: There was no way to capture the new Mishapl D
created by theline

‘above, so when the Edit form is opened, it just goesto the
last mishap.

MeVisible = False'Make the form invisible so thereis no
screen flickering
Me Refresh 'Refresh so the changes takes

'Open the new Project in the Edit Form so the user can add
factors

Global Declarations.gBInAddAMishap = True

Global Declarations.gFormNeedsRefresh = True

DoCmd.OpenForm "1-0-0-2-frm-EditMishap"

exitSub:
Exit Sub

startError:

DoCmd.Beep

MsgBox "You have | eft at least onefield in thiswizard
blank. All entries are mandatory. Please go back and input
datafor dl fields.", voOK Only, "All Entries Are Mandatory"

Resume exitSub

End Sub

'Function/Sub Name: cmdCodeMaintenance_Click()
'‘Description: Opens the code maintenance form.
'Input: None

'Output: None

192

'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance

Private Sub cmdCodeMaintenance_Click()
DoCmd.OpenForm " 1-0-0-7-PopUpFrm-

CodeMaintenance"

End Sub

:Function/Sub Name: Form_Activate()
:D&acri ption: Update the menu bar.
'Input: None

:Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuCther").Visible = True
End Sub

:Functi on/Sub Name: Form_Deectivate()
'Description: Updates the menu bar.
:Input: None

'Output: None

'References. None

Private Sub Form_Deactivate()
Application.CommandBars("mnuOther").Visible = Fase
End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

'Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-5-frm-AddMishap”
End Sub

Private Sub Form_Open(Cancel As Integer)
Application.CommandBars("mnuOther").Visible = True
End Sub

Private Sub txtDate GotFocus()
'Format the date in the textbox so the time doesn't appear
Me.txtDate = Format([txtDate], "Medium Date")

End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

‘basis.

‘Input: None

193

‘Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVad strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.ParentWidth - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORM CL ASS-1-0-0-6-PopUpFrm-AdministratorLogon

Option Compare Database
Option Explicit

'Reusable variable for opening a connection
Dim conn As New ADODB.Connection

'Reusable variable for recordset operations
Dim rst AsNew ADODB.Recordset

FORM DESCRIPTION

'Class Name: 1-0-0-6-PopUpFrm-AdministatorLogon

'‘Author: Pat Flanders & Scott Tufts

"This class controls access to the Administrator functions of
the

'database. It provides a user logon and compares the User ID
‘and password that are input to val ues retrieved from a hidden
'passord table in the investigate.mdb database. It the User ID
‘and password match, then the 1-0-0-0-frm-SelectMishap
form

'is opened.

'NOTE: Theinvestigatemdb database is not encrypted and
should

'be replaced with more secure means of validation such asa
key

‘server in future versionsof this program.

'References:

' - Investigate mdb
- clFormWindow

' - ez_SizingFunctions
- GlobaDeclarations

TR KK AR AR AR A IR A IR A IR A IR A IR A IR A h Ak khkhkkhkhkkkhkhkhkxkx

FUNCTIONS

TR A A KA AR A AR A AR A IR A IR A IR A IR A A h kA hkhkhkhkhkhkhkkhkhkkkkkx

:Function/Sub Name: choUser_AfterUpdate()
'‘Description: Populates the User combo box.
:Input: None

:Output: None

'References. None

Private Sub choUser_AfterUpdate()

rst.MoveFirst
Do Until rst.EOF
If ret!UID = Me.cboUser.Vdue Then

194

Exit Sub
End If
rs.MoveNext
Loop
Me.txtPassword.Vaue =""

End Sub

:Functi on/Sub Name: cmdCancel_Click()
:chri ption: Closes the form undoing changes.
:Input: None

:Output: None

'References. None

Private Sub cmdCancel_Click()

DoCmd.Close acForm, "1-0-0-6-PopUpFrm-
AdministatorL ogon"

End Sub

'Function/Sub Name: ¢cmdOK_Click()

'Description: Calls the function to check the password/User
combination'

'If successful, setsthe globa flag so the user doesn't have to
keep

'logging on every time he/she wants to access administrative
functions.

'Input: None
'Output: None
'References:

- Globadeclaations
' - chkPassword()

Private Sub cmdOK _Click()

'Check to seeif the user |eft the pasword box blank
If Trim(Me.txtPassword.Vaue) ="" Then Exit Sub

'Call the check password subroutine. |f successful, set the
global
'flag so the user doesn't have to keep loggin on every time
he/she
'wants to access administrative functions.
If chkPassword(Me.choUser.VValue,
Me.txtPassword.Vaue) = True Then
MsgBox "Login successful." & Chr(13) & Chr(13) &
"Y ou will not be required to log in again this session.”,
vbInformation + vbOK Only, "Login Successful"
MeVisble = False

DoEvents
DoCmd.OpenForm "1-0-0-0-frm-SelectMishap"
Else
MsgBox "Invalid password.", vbExclamation +
vbOKOnly, "Login Denied"
End If

DoCmd.Close acForm, "1-0-0-6-PopUpFrm-
AdministatorLogon"

End Sub

:Functi on/Sub Name: Form_Close()
'Description: Closes the form.
:Input: None

'Output: None

'References. None

Private Sub Form_Close()
‘Clean up
rst.Close
conn.Close

End Sub

'Function/Sub Name: Form_L oad()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

'‘Output: None

'References:
- ezSizeForm

Private Sub Form_Load()

'‘Dynamically resize the form based on screen resolution.
ezSizeForm Me, -1
MoveToCenter "1-0-0-6-PopUpFrm:
AdministatorL ogon"

End Sub

'Function/Sub Name: Form_Open()

'Description: Get the user list and passwords from the
Investigate.mdb

file and populate the user combobox with entries.

‘Input: None

195

‘Output: None

'References:
' - Investigatemdb

Private Sub Form_Open(Cancel As Integer)

'Set the provider name
conn.Provider = "Microsoft.Jet. OLEDB.4.0"

'Open a connection to the data
conn.Open Globa Declarations.gStrAppPath &
"Investigate mdb"

'Open arecordset with a keyset cursor
rst.0Open "SELECT * FROM tblPasswordFile", conn,
adOpenDynamic, adL ockOptimistic, adCmdText

Dim sVauelist As String
'Walk the recordset creating alist for the combobox to use.
Do Until rst.EOF
sValuelist =rstlUID & ";" & sVaduelist
rst.MoveNext
Loop

'Populate the combobox.
Me.cboUser.RowSource = sVauelist
rst.MoveFirst

Me.cboUser.Vaue = rg!UID
Me.txtPassword.Value ="

End Sub

'Function/Sub Name: chkPassword(
'Description: Checks the User/Password combination for
validity.

'Input:
-strUID
' - strPWD

User Name as String
User password as string

'Output: Success or failure.

'References:
' - Investigate mdb

Private Function chkPassword(strUID As String, StrPWD As
String) As Boolean

rst.MoveFirst

'Walk the recordset if a userl D/Password combination
match is

‘found, return success.

Do Until rst.EOF

If rst!UID = Trim(strUID) And rst!PWD =
Trim(strPWD) Then
GlobalDeclarations.gBInAdministrator = True
chkPassword = True
Exit Do
Else
Globa Declarations.gBInAdministrator = False

chkPassword = False
End If

rs.MoveNext
Loop

End Function

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on thescreen. Using the
ezSizeForm

'class bresks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

196

'Input: None
‘Output: None

'References:
' - clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORM CL ASS-1-0-0-7-PopUpFrm-CodeM aintenance

Option Compare Database
Option Explicit

FORM DESCRIPTION

'Class Name: 1-0-0-7-PopUpFrm-CodeMaintenance
'Author: Pat Flanders & Scott Tufts
'Allows an Administrator to add codes directly to the datbase

code
'lookup tables.

'References:
- tblAircraft
' - tblMishapClass
- tblMishapL ocation
- tblOrganization
- tbimishaptype

TRAAK KK A IR A IR A AR A IR A IR A Ak hhkhkhkkhkhkkhkhkkkhkkkhkhkkhkkx

FUNCTIONS

TRA A KA AR A KR A AR A IR A IR A IR A IR A I A A kA hkhkhkhkhkkhkhkkhkhkkkkkx

'Function/Sub Name: cmdClose_Click()
:D&ecription: Closestheform.

'Input: None

:Output: None

'References. None

Private Sub cmdClose_Click()

DoCmd.Close acForm, "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

:Functi on/Sub Name: cmdOK_Click()

'‘Description: Opens the appropriate table for direct editing
%anster?e radio button selection in the frame.

:Input: None

‘Output: None

'References. None

Private Sub cmdOK_Click()

197

If MeFrame6 = 1 Then
DoCmd.OpenTable "dbo.tblAircraft”, acViewNormal,
acEdit
End If

If Me.Frame6 =2 Then
DoCmd.OpenTable "dbo.thIMishapClass’,
acViewNormal, acEdit
End If

If Me.Frame6 = 3 Then
DoCmd. OpenTable "dbo.tblMishapLocation",
acViewNormal, acEdit
End If

If Me.Frame6 = 4 Then
DoCmd.OpenTable "dbo.thlOrganization”,
acViewNormal, acEdit
End If

If Me.Frame6 =5 Then
DoCmd.OpenTable "dbo.tblmishaptype",
acViewNormal, acEdit
End If

End Sub

:Function/Sub Name: Form_Activate()
:Deecri ption: Update the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Activate()
'Change the menus when the form is activated (uncovered)
Application.CommandBars("mnuCther").Visible = True
Application.CommandBars("FindSortExport").Visible =

False

End Sub

'Function/Sub Name: Form_Close()
:Dacription: Closes the form.
:Input: None

:Output: None

'References. None

Private Sub Form_Close()
‘Change the menus when the form is activated (uncovered)
Application.CommandBars("mnuCther").Visible = True

Application.CommandBars("" FindSortExport").Visible =
False
End Sub

:Functi on/Sub Name: Form_Deactivate()
:Dacri ption: Updates the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Deactivate()

‘Change the menus when the form is covered up
(deactivated)

Application.CommandBars("mnuCther").Visible = False

Application.CommandBars("FindSortExport").Visible =
True

End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

'Output: None

'References:
- ezSizeForm

198

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-7-PopUpFrm-CodeMaintenance"
End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class bresks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'fundion so that minor adjustments can be made on aform by
form

'basis.

'Input: None
'‘Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent. Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORM CL ASS-1-0-0-8-PopUpFrm-Passwor dM aintenance

Option Compare Database rst.MoveFirst
Option Explicit Do Until r&t.EOF
If rsttUID = Me.choUser.Vaue Then
'Reusable variable for opening a connection Me.txtClearPWD.Vaue = rst!PWD
Dim conn As New ADODB.Connection Exit Sub
End If
'Reusable variable for recordset operations rst. MoveNext
Dim rst AsNew ADODB.Recordset Loop
'Flag for differentiating new entries from edits End Sub

Dim bNewOrEdit As Boolean

' FORM DESCRIPTION 'Function/Sub Name: cmdCancel_Click()
'Class Name: 1-0-0-8-PopUpFrm-PasswordMaint 'Description: Closes the form undoing changes.
'‘Author: Pat Flanders & Scott Tufts ‘Input: None
"This class controls access to the Administrator functions of '‘Output: None
the '
'of the password table in the Investigate. mdb database. The 'References: None
table '
'isHIDDEN and cannot be viewed directly. Thisclass
alows addition, Private Sub cmdCancel_Click()
'deletion, and editing of passwordsand user IDsin THAT
database. rst.Cancel Update
' DoCmd.Close acForm, "1-0-0-8-PopUpFrm-
'NOTE: The Investigate mdb database is not encrypted and PasswordMaint"
should
'be replaced with more secure means of validation such asa End Sub
key
'server in future versions of thisprogram.
'References: 'Function/Sub Name: cmdDelete Click()
' - Investigate mdb '

- clFormWindow '‘Description: Deletes the selected user from the password
' - ez_SizingFunctions table.

- GlobalDeclarations '
' 'Input: None

'Output: None

'References. None

Ykkkkkkkkhkkkkhkkkkhkkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkkhkhkhkkkhkkkhkkkxkx

' FUNCTIONS
Ykkkkkhkkkkhkkkhkkkhkkhkkhkkkhkhkkkhkhkkkhkhkkhkkhkkkhkkkhkkkhkhkkkhkkhkkkkkkxkx Prlvate SJb CmdDeIG.’e_C“Ck()
Dim response As Variant
response = MsgBox("Ary you sure you want to delete the
HFACS Administration account for " & Me.cboUser.Vaue
'Function/Sub Name: choUser_AfterUpdate() & "?', vbYesNo + vbQuestion, "Delete Admin Account")
' If response = vbY es Then
'Description: Populates the User combo box. rst.Delete
' DoCmd.Close acForm, "1-0-0-8-PopUpFrm-
'Input: None PasswordMaint"
' End If
‘Output: None
' End Sub
'References: None
Private Sub choUser_AfterUpdate() 'Function/Sub Name: cmdNew_Click()

199

'Description: Adds anew user to the password table.
‘Input: None
‘Output: None

'References: None

Private Sub cmdNew_Click()

Me.choUser.Visble = Fase
MeitxtUser.Visible=True
Me.txtClearPWD =""
Me.txtPassword.Vaue =""
Me.xtConfirm.Value=""
Me.cmdDel ete.Enabled = False
rst. AddNew

bNewOrEdit = True
Me.txtUser.SetFocus

End Sub

:Functi on/Sub Name: cmdSave_Click()

:D&ecri ption: Validates entries and saves changes.
:Input: None

‘Output: None

'References. None

Private Sub cmdSave Click()
On Error GoTo dtartError

'‘Make sure password and password confirmation match.
If Trim(Me.txtPassword.Value) =
Trim(Me.txtConfirm.Value) Then

Select Case bNewOrEdit

Case True 'Thisis anew entry, so make sure both User
& Password are specified.

If Trim(Me.txtUser.Vaue) ="" Or
Trim(Me.txtPassword.Value) ="" Then
MsgBox "Y ou can't leave the USER or
PASSWORD fidds blank.", vbOKOnly + vbExclamation,
"Missing Data"
Exit Sub
End If

DoCmd.SetWarnings (False)
rst!UID = MeitxtUser.Vaue
rst!PWD = Me.txtPassword.Value
rst.Update

DoCmd.SetWarnings (True)

Case False 'Thisis an edit, so make sure the password is
specified.

If Trim(Me.txtPassword.Value) ="" Then

200

MsgBox "Y ou can't leave the PASSWORD field
blank.", vbOKOnly + vbExclamation, "Missing Data"
Exit Sub
End If

'Update the database with the changes
DoCmd.SetWarnings (False)

rst!UID = Me.choUser.Vaue
rst!PWD = Me.txtPassword.Value
rst.Update

DoCmd.SetWarnings (True)

End Sdlect

DoCmd.Close acForm, "1-0-0-8-PopUpFrm-
PasswordMaint"

Else
MsgBox "Y our new password and confirmation entries
do not match.", vbOK Only + vbExclamation, " Passwords
Don't Match"
Me.txtPassword.Vaue=""
MetxtConfirm.Vaue=""
End If

exitSub:
Exit Sub
startError:

MsgBox ERR.Description & "Number: " & ERR.Number
GoTo exitSub

End Sub

:Functi on/Sub Name: Form_Close()
'Description: Closes the form.
:Input: None

'‘Output: None

'References. None

Private Sub Form_Close()
'Clean up
rst.Close
conn.Close

End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizes theform to the users
screen
'resolution and then centersit.

‘Input: None

‘Output: None

'References:
- ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-8-PopUpFrm-PasswordMaint"
End Sub

'Function/Sub Name: Form_Open()

'‘Description: Get the user list and passwords from the
Investigate.mdb

file and populate the user combobox with entries.
‘Input: None

‘Output: None

'References:
' - Investigatemdb

Private Sub Form_Open(Cancel As Integer)

'Set the provider name
conn.Provider = "Microsoft.Jet. OLEDB.4.0"

'‘Open a connection to the data
conn.Open Globa Declarations.gStrAppPath &
"Investigate.mdb"

'Open arecordset with a keyset cursor
rst.Open "SELECT * FROM tblPasswordFile", conn,
adOpenDynamic, adL ockOptimistic, adCmdText

Dim sValuelList As String

'‘Wak the recordset

Do Until rs.EOF
sValuelList =rst!UID & ";" & sValuelist
rs.MoveNext

Loop

Me.cboUser.RowSource = sValuelist

rst.MoveFirst

Me.choUser.Vaue = rs!UID
Me.txtClearPWD.Value = rst! PWD
Me.txtPassword.Vaue=""
Me.xtConfirm.Value=""

End Sub

201

'Function/Sub Name: txtUser_GotFocus()

'Description: Disable the "New" button once it has been
clicked.

'Input: None
'Output: None

'References: None

Private Sub txtUser_GotFocus()
Me.cmdNew.Enabled = False

End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form onthe screen. Using the
ezSizeForm

'class bresks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
'Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVad strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top =((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-2-0-1-0-frm-QueryMenu

Option Compare Database
Option Explicit

' FORM DESCRIPTION

'ClassName: 2-0-1-0-frm-QueryMenu

‘Author: Pat Flanders & Scott Tufts

'Thisclassisthe form for selecting the type of query to run.
"It has no specid functionality or recordsource.

'References:
- clFormWindow
' - ez_SizingFunctions
- Globa Declarations
' - 2-0-1-1-frm-ExpertQueryForm
' - 2-0-2-1-frm-Summary

B R

TR AR A KK A KR A IR A AR A IR A IR A IR A I A Ak Ak khkhkkhkhkkhkhkkhkhkkkkkx

FUNCTIONS

TRA A KA AR A KR A AR A IR A IR A IR A IR A I A A kA hkhkhkhkhkkhkhkkhkhkkkkkx

'Function/Sub Name: cmdCloseQueryMenu Click()
:D&ecription: Closestheform.

'Input: None

:Output: None

'References. None

Private Sub cmdCloseQueryMenu_Click()
DoCmd.Close acForm, "2-0-1-0-frm-QueryMenu"
End Sub

"Function/Sub Name:
' - cmdCloseQueryMenu_MouseM ove()
- cmdExpertQuery_MouseMove()
- cmdHFACS _MESummary_MouseMove()

'‘Description: The following 3 functions update textcolor on
:tgtfmmmd buttons in response to mouse over events.

‘Input: None

:Output: None

'References. None

202

Private Sub cmdCloseQueryMenu_MouseMove(Button As

Integer, Shift AsInteger, X AsSingle, Y As Single)
' Make the button text blue when it gets the focus
Me.cmdExpertQuery.ForeColor = QBColor(0)
Me.cmdHFACS_MESummary.ForeColor = QBColor(0)
Me.cmdCloseQueryMenu.ForeColor = QBColor(9)

End Sub

Private Sub cmdExpertQuery_MouseMove(Button As

Integer, Shift AsInteger, X AsSingle, Y AsSingle)
' Make the button text blue when it gets the focus
Me.cmdExpertQuery.ForeColor = QBColor(9)
Me.cmdHFACS_MESummary.ForeColor = QBColor(0)
Me.cmdCloseQueryMenu.ForeColor = QBColor(0)

End Sub

Private Sub cmdHFACS_MESummary_MouseMove(Button

As Integer, Shift AsInteger, X AsSingle, Y AsSingle)
' Make the button text blue when it gets the focus
Me.cmdExpertQuery.ForeColor = QBColor(0)
Me.cmdHFACS_MESummary.ForeColor = QBColor(9)
Me.cmdCloseQueryMenu.ForeColor = QBColor(0)

End Sub

:Functi on/Sub Name: Form_Close()
:Dacription: Closes the form.
:Input: None

:Output: None

'References. None

Private Sub Form_Close()

Application.CommandBars("mnuOther").Visible = Fase

Application.CommandBars("mnuProgramMain”).Visible =
True

Formsl[MainMenu].Visible = True

End Sub

'Function/Sub Name: Form_Activate()
:Deﬂ:ri ption: Update the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuOther").Visible = True
End Sub

:Functi on/Sub Name: Form_Deactivate()
'Description: Updates the menu bar.
:Input: None

'Output: None

'References. None

Private Sub Form_Deectivate()
Application.CommandBars("mnuOther").Visible = False
End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersiit.

'Input: None

'‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1
MoveToCenter "2-0-1-0-frm-QueryMenu"

End Sub

'Function/Sub Name: Form_Open

‘Description: Updates the menu bar and sets the focusto the
'fg)srgwmmd button, setting its color to blue.

:Input: None

:Output: None

'References. None

Private Sub Form_Open(Cancel As Integer)

Formsl[MainMenu].Visible = False
Application.CommandBars("mnuCther").Visible = True

Me.cmdCloseQueryMenu.SetFocus
' Make the button text blue when it gets the focus
Me.cmdExpertQuery.ForeColor = QBColor(0)

Me.cmdHFACS_MESummary.ForeColor = QBColor(0)
Me.cmdCloseQueryMenu.ForeColor = QBColor(0)

203

End Sub

:Functi on/Sub Name: cmdHFACS _MESummary_Click()
:Deﬂ:ri ption: Opensthe 2-0-2-1-frm-Summary form.
:Input: None

:Output: None

'References:
' - 7-0-0-1-PopUpFrm-waitProgressBar

Private Sub cmdHFACS_MESummary_Click()

DoCmd.OpenForm " 7-0-0-1-PopU pFrm-

waitProgressBar", acNormal, ", ", acReadOnly, acNormal
DoCmd.RepaintObject acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"

DoCmd.OpenForm "2-0-2-1-frm-Summary"
DoCmd.Close acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"

End Sub

'Function/Sub Name: cmdExpertQuery_Click()

'‘Description: Opensthe 2-0-1- 1-frm- ExpertQueryForm
form.

‘Input: None
‘Output: None

'References. None

Private Sub cmdExpertQuery_Click()
DoCmd.OpenForm "2-0-1-1-frm-ExpertQueryForm"

End Sub

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

"function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
‘Output: None

'References:
' - clFormWindow

' "Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *

0.6)
Public Sub MoveToCenter(ByVa strFormName As String) .Left = (Parent.Width - .Width) / 2
End With
Dim fwForm As New clFormWindow Set fwForm = Nothing
With fwForm End Sub

.hwnd = Forms(strFormName).hwnd

204

FORMCLASS-2-0-1-1-frm-ExpertQueryForm

Option Compare Database
Option Explicit

'Reusable variable for creating combobox value lists
Dim tempvaluelist As String

FORM DESCRIPTION

'ClassName: 2-0-1-1-frm-ExpertQueryForm

'‘Author: Pat Flanders & Scott Tufts

"Thisform allows the user to choose multiple criteriafrom a
seriesof

‘combo boxes and then query the database to open the
'2-0-1-2-frm-ViewM ishaps form and display the mishaps and
factors.

"'When the form opens, it popul ates the combo boxes by
running UNION

'queriesto build the recordsets needed to serve as control
SOUrces.

'Thisis necessary to add the "<AlI>" choice. The only
exception

'isthe"Year" combo box. It uses a string manipulation
function

'called populateComboBoxWithAll() to build avauelist.
This

'is necessary because the UNION method will only work
with norrinteger

‘datatypes. The problem with the

popul ateComboBoxWithAll()

'method isthat it is limited in size to about 50 two
dimensional

‘entries. In addition, commas and semi-colons create
problems

‘and must be removed from the string during build.

'Finally, when the user clicks"View", code is executed that
builds

'the input string for stored procedure 2-0-1-1-
flanCountflanFilteredMishaps

‘which isthe recordsource for the 2-0-1-2-frm-ViewMishaps
form.

'this input string is then passed to the "view" formviaa
global

'variable and the viewMishaps form is opened.

'References:
- clFormWindow
' - ez_SizingFunctions
- Globa Declarations
' - 2-0-1-2-frm-ViewMishaps

TRA AR A AR A AR A IR A IR A IR A A Ak khhkhkhkhkhkhkhkhkhkkhkhkkkkx

' FUNCTIONS

Tkkkkkhkhkhkhhhhhhhhhhhhhhhhhhhhhkhkhhhhhkhhhhhkkkkkk

205

:Function/Sub Name: Form_Activate()
:Dscri ption: Update the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuOther").Visible = True

End Sub

:Functi on/Sub Name: Form_Deactivate()
:Dacri ption: Updates the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Deactivate()
Application.CommandBars("mnuCther").Visible = Fase
End Sub

:Functi on/Sub Name: Form_Close()
:Dacri ption: Updates the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Close()
Application.CommandBars("mnuOther").Visible = Fase
End Sub

:Functi on/Sub Name: cmdBack_Click()
:D&ecription: Closestheform.

:Input: None

:Output: None

'References. None

Private Sub cmdBack_Click()
DoCmd.Close acForm, "2-0-1-1-frm-ExpertQueryForm"
End Sub

'Function/Sub Name: Form_L oad()

'Description: Dy namically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

‘Output: None

'References:
- ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1
MoveToCenter "2-0-1- 1-frm-ExpertQueryForm"

End Sub

'Function/Sub Name: Form_Open()

'‘Description: Populates combo boxes. In order to alow the
combo

'boxes to offer <All> as a choice, 2 methods are

'needed -- one for integers and another for strings.

"The populateComboBoxWillAll() subroutine is used for
integers (like the Mishap
'Y ear), while stored procedures are used for strings.

‘Important to note that the populateComboBoxWill All() will
not work for

‘creating strings of more than about 50 entries because the
combo box

'rejects them as too, long. Stored procedures, however, do
not suffer

'from thislimitation.

'Input: None
'‘Output: None

'References:
- populateComboBoxWithAll()

Private Sub Form_Open(Cancel As Integer)
Application.CommandBars("mnuCther").Visible = True

'Populate each combo box

‘Aircraft

With Me.choAircraft
.RowSource = "9-0-0-2-flanL cokupAircraftAll"
Vaue="<All>"

End With

'‘Organization

206

With Me.cboOrganization
.RowSource = "9-0-0-2-flanL ookupOrgani zationAll"
Vaue="<All>"

End With

‘Location

With Me.cholL ocation
.RowSource = "9-0-0-2-flanL ookupL ocationAll"
Vaue="<All>"

End With

'Class category

With Me.cboClass
.RowSource = "9-0-0-2-flanL ookupClassAll"
Vaue="<All>"

End With

"Type category

With Me.choType
.RowSource = "9-0-0-2-flanL ookupTypeAll"
Vdue="<All>"

End With

"Year (can't use UNION stored procedure to append <All>
becauseit is of type Integer)
populateComboBoxWithAll *9-0-0-2-
flanModifiedL ookupY ear”, 1
With Me.cboY ear
.RowSourceType = "VdueList"
.RowSource = tempvaludlist
Vaue="<All>"
End With

End Sub

'Function/Sub Name: cmdView_Click()

'Description: Builds the input string to passto the stored
procedure

'to get the correct records. Order of theseif statements must
match the SP.

'If <All> was selected, then pass " so that the SP knowsthe
valueisNULL.

'Once theinput string is built, a stored procedure is run from
wihin

'this function to determine if there are actualy any recordsin
the

'database matching the users selections. If no records match,
ane error

'messageis displayed. Otherwise the 2-0-1-2-frm-
ViewMishaps form

'is opened.

'Input: None
'Output: None

'References:
' - 2-0-1-2-frm-ViewMishaps
- gStrinputString

Private Sub cmdView_Click()

On Error GoTo Err_cmdView_Click

'Reset the global variable
Globa Declarations.gStrinputString = "

‘Build the input string to pass to the stored procedure to get
the correct records.
'Order of these if statements must match the SP.
'If <All> was selected, then pass " so that the SP knows the
valueisNULL.
If Me.choAircraft.Vaue <>"<All>" Then
Global Declarations.gStrinputString = "@AC
varchar(10)=""' & Me.choAircraft.Vaue& ""
Else
Global Declarations.gStrinputString = "@AC
varchar(10)=""
End If

If Me.choType.Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Type
varchar(3)="" & Me.cbhoTypeVaue & ""
Else
Global Declarations.gStrinputString =
Globa Declarations.gStrinputString & ", @Type
varchar(3)=""
End If

If Me.choClass.Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & *, @Class
varchar(1)=" & Me.cboClassVaue & ""
Else
Global Declarations.gStrinputString =
Global Declarations.gSrlnputString & ", @Class
varchar(1)=""
End If

If Me.cboL ocation.Value <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Loc
varchar(25)="" & Me.cboLocation.Vaue& "
Else
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Loc
varchar(25)=""
End If

If Me.choOrganization.Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Svc
varchar(10)="' & Me.cboOrganization.Vadue& ""
Else
Global Declarations.gStrinputString =
Globa Declarations.gStrinputString & "', @Svc
varchar(10)=""
End If

If Me.choY ear.Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Yr int="' &
Me.choYear.Vaue& "™
Else
Global Declarations.gStrl nputString =
Global Declarations.gStrinputString & ", @Y int=""
End If

207

‘These 3 paramaters are required for the SP to run (because
the HFACS summary form uses the same SP), but remain
NULL

Global Declarations.gStrInputString =
Global Declarations.gStrinputString & ", @1stLevel
varchar(5)=""

Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @2ndLevel
varchar(5)=""

Global Declarations.gStrlnputString =
Global Declarations.gStrinputString & ", @3rdLevel
varchar(5)=""

'Run a stored procedure to determine if there are actually
any recordsin the database matching the

‘users selections.

Dim cnn As Connection

Dim oCmd As ADODB.Command

Dim rst As ADODB.Recordset

Dim objPrmAC As ADODB.Parameter
Dim objPrmSvc As ADODB.Parameter
Dim objPrmType As ADODB.Parameter
Dim objPrmClass As ADODB.Parameter
Dim objPrmLoc As ADODB.Parameter
Dim objPrmYr As ADODB.Parameter

Set cnn = CurrentProject.Connection

cnn.CursorLocation = adUseClient

Set rst = New ADODB.Recordset

Set oCmd = New ADODB.Command

oCmd.ActiveConnection = cnn

oCmd.CommandText ="""2-0-1-1-
flanCountflanFilteredMishaps™"

oCmd.CommandType = adCmdStoredProc

'Create parameters for the SP that correspond to the combo
boxes.

‘They have to be appended in the same order that they
appear in

'the stored procedure.

Set objPrmA C = oCmd.CreateParameter(" @AC",
adVarChar, adParamlnput, 10)
oCmd.Parameters.Append objPrmAC
If Me.choAircraft.Vaue <> "<All>" Then
objPrmAC.Vaue = Me.choAircraft.Vaue
End If

Set objPrmType = oCmd.CreateParameter(" @Type",
adVarChar, adParaminput, 3)
oCmd.Parameters.Append objPrmType
If Me.chboTypeVaue <> "<All>" Then
objPrmType.Vdue = Me.choType Vaue
End If

Set objPrmClass = oCmd.CreateParameter(" @Class',
adVarChar, adParaminput, 1)
oCmd.Parameters.Append objPrmClass
If Me.cboClass.Vdue <> "<All>" Then
objPrmClass.Vaue = Me.choClass.Vaue
End If

Set objPrmLoc = oCmd.CreateParameter("@Loc",
adVarChar, adParamlnput, 25)

oCmd.Parameters.Append objPrmLoc

If Me.cboL ocation.Value <> "<All>" Then

objPrmLoc.Vaue = Me.cbolL ocation.Vaue
End If

Set objPrmSvc = oCmd.CreateParameter(" @Svc",
adVarChar, adParamlnput, 10)
oCmd.Parameters.Append objPrmSvc
If Me.cboOrganization.Vaue <>"<All>" Then
objPrmSvc.Value = Me.cboOrganization.Vaue
End If

Set objPrmYr = oCmd.CreateParameter(" @Y r", adinteger,
adParamlnput)
oCmd.Parameters.Append objPrmY'r
If Me.choY ear.Value <> "<All>" Then
objPrmYr.Vdue = Me.cboYear.Vaue
End If

‘These 3 paramaters are required for the SP to run (because
the HFACS summary form uses the same SP), but remain
NULL

Set objPrmSvc = oCmd.CreateParameter(" @1stLevel",
adVarChar, adParaminput, 10)

oCmd.Parameters.Append objPrmSvc

Set objPrmSvc = oCmd.CreateParameter(" @2ndLevel",
adVarChar, adParamlnput, 10)

oCmd.Parameters.Append objPrmSvc

Set objPrmSvc = oCmd.CreateParameter("3rdLevel”,
adVarChar, adParamlnput, 10)

0oCmd.Parameters.Append objPrmSvc

'Run the SP
Set rst = oCmd.Execute

'Get the record count

rst.MoveFirst

Dim tempRecordCount As Integer
tempRecordCount = rst! NumRecords

'Clean up

rst.Close

Set oCmd = Nothing
cnn.Close

'If there really are records, then open them up, otherwise,
tell
'the user that no records matched his search criteria.
If tempRecordCount > 0 Then
DoCmd.OpenForm "2-0-1-2-frm-ViewMishaps'
Else
MsgBox "There are no records that match your search
criteria", vbOKOnly + vblnformation, "Criteria Too
Restrictive"
End If

Exit_cmdView_Click:
Exit Sub

Err_cmdView_Click:
MsgBox ERR.Description
Resume Exit_cmdView_Click

End Sub

'Function/Sub Name: populateComboBoxWithAll()

208

'Description: Makes a connection to the stored procedure
passed-in

‘and builds an string that can be used by a combo box to
dislay

‘and "iNumberCol ToGet" column drop down list. It hasto
check

‘every record for commas and semi-colons in the data
becausethese

'two characters are interpreted by the combo box as
delimiters,

'so they must be replaced with some other character (a"-" is
what

'I'm using here).

'Input:

' sNameOfSP - Name of the Stored Procedure to
oet

' the records from.

iNumberCol ToGet- Number of columns of datato

read

' from the Stored Procedure.
‘Output: None

'References:

' - clFormWindow

Private Sub populateComboBoxWithAll(sNameOfSP As
String, iNumberCol ToGet As Integer)

'STEP 1 - Make a connection and get a recordset matching
the passed in parameters

Dim cnn As Connection

Dim oCmd As ADODB.Command

Dim rst As ADODB.Recordset

Set cnn = CurrentProject.Connection

cnn.CursorL ocation = adUseClient

Set rst = New ADODB.Recordset

Set oCmd = New ADODB.Command

oCmd.ActiveConnection = cnn

oCmd.CommandText ="""" & sNameOfSP & """

oCmd.CommandType = adCmdStoredProc

Set rst = oCmd.Execute

'‘Make sure tempvalue list is empty before adding to it.
tempvaluelist =""

'STEP 2 - Build astring of all the values starting with
choice <All>.
Dimi As Integer
i=0
For i =0 To (iNumberCol ToGet- 1)
tempvaluelist = "<All>;" & tempvaudlist '‘Add <All>
Next

‘Now add the real vaues
rst.MoveFirst
Do Until rs.EOF

Dimk As Integer

k=0

While k < iNumberCol ToGet

'STEP 3- Replace commas and semicolons with
dashes becuase the mess up the list

Dim astrText As String

DimiCount AsInteger

'Check for null fields and only operate on those that
arenot null
If 1sNull(rst.Fields(k)) Then
tempvaluelist = tempvaludist & rst.Fields(k) & ";"
Else
astrText = Trim(rst.Fields(k))

' Loop through array, replacing commas and
semicolons
For iCount = 1 To Len(astrText)

If Mid(astrText, iCount, 1) ="," Or
Mid(astrText, iCount, 1) =";" Then
' If array element satisfies wildcard search,
"replaceit.
Mid(astrText, iCount, 1) ="-"
End If
Next
" Join string.
tempvaluelist = tempvauelist & astrText & ;"
End If
k=k+1
Wend
rst.MoveNext
Loop

rst.Close

Set rst = Nothing
Set oCmd = Nothing
cnn.Close

End Sub

209

'Function/Sub Name: MoveToCenter()

'‘Description: Centes the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

"function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
‘Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVad strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6
.I)_eft = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-2-0-1-2-frm-ViewMishaps

Option Compare Database
Option Explicit

FORM DESCRIPTION

'ClassName: 2-0-1-2-frm-ViewMishaps
'Author: Pat Flanders & Scott Tufts

"This classis used to view the mishapswith factors It does
'NOT alow input, edit, or deletion of data. It iscalled by
'both the 2-0-1-1-frm-ExpertQueryForm and the 20-2-1-frm-
Summary

‘form.

'‘Becuase it is called by two different forms, it has the
capability

'to determine which stored procedure to use as arecord
source

'based on the value of the

Global Declarations.bUseHFA CSSummaryQuery
'global variable.

'References:

' - 2-0-1-2-subFrm-ViewMishaps
- clFormWindow

- ez_SizingFunctions

- GlobaDeclarations

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkkhkkkkx

' FUNCTIONS

Ykkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkkhkkkkx

'Functior/Sub Name: cmdCancel _Click()

'Description: Savesthe state of the data (and size of the
form)

‘and closes the form.

'Input: None

‘Output: None

'References. None

Private Sub cmdCancel_Click()
OnError GoTo Err_CmdCancel_Click
DoCmd.DoMenultem acFormBar, acEditMenu, acUndo, ,
acMenuVer70
DoCmd.Close
Exit_CmdCancel_Click:
Exit Sub

210

Err_CmdCancel_Click:
DoCmd.Close

End Sub

:Fundi on/Sub Name: cmdSave_Click()
:Deacription: Closestheform.

:Input: None

:Output: None

'References. None

Private Sub cmdDone_Click()
DoCmd.Close acForm, "2-0-1-2-frm-ViewMishaps'

End Sub

:Function/Sub Name: Form_Activate()
:Descri ption: Update the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuOther").Visble= True
End Sub

'Function/Sub Name: Form_Close()

'Description: Resetsthe flag used to tell theform which
stored

'procedure to use for arecord source.

'Input: None

‘Output: None

'References. None

Private Sub Form_Close()
Globa Declarations.bUseHFACSSummaryQuery = False
End Sub

'Function/Sub Name: Form_Deactivate()

'Description: Updates the menu bar.
‘Input: None
‘Output: None

'References. None

Private Sub Form_Deactivate()
Application.CommandBars("mnuOther").Visible = Fase
End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizestheform to the users
screen

'resolution and then centersit.

‘Input: None

‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "2-0-1-2-frm-ViewMishaps'
End Sub

'Function/Sub Name: Form_Open()

'Description: Determines which stored procedure to use asa
record source

'based on the value of the

Global Declarations.bUseHFA CSSummaryQuery

‘globd variable.

'Input: None
‘Output: None

'References:
' - GlobalDeclarations

Private Sub Form_Open(Cancel As Integer)
Application.CommandBars("mnuCther").Visible = True

‘Determine which stored procedure to use as arecord
source.
If Global Declarations.bUseHFACSSummaryQuery = True
Then
‘Thisform was called from the 2-0-2-1-frm-Summary
form.
Me.RecordSource = "dbo.2-0-2-1-
flanSummaryGetRecords"
Else
‘Thisform was called from the 2-0-1-1-frm-
ExpertQueryForm form.

Me.RecordSource = "dbo.2-0-1-1-
flanFilteredMishapTable’
End If

'Set the unique t able for the underlying stored procedure
with code

'becuase it sometimes dissapears when using the visual
property sheet.

Me.UniqueTable = "thIMishaps’

'Set the inputparameters for opening the form
Me.InputParameters = Global Declarations.gStrinputString

End Sub

:Functi on/Sub Name: cmdPreview_Click()
:Deecri ption: Opens areport.

:Input: None

:Output: None

'References:
' - 1-0-MishapSnapshot-OpenMishaps

Private Sub cmdPreview_Click()
Global Declarations.gLngMishapToGet = Me.txtMishapl D
On Error GoTo startError
DoCmd.OpenReport "1- 1-MishapSnapShot",
acViewPreview
exitSub:
Exit Sub
startError:
MsgBox "Y ou must have adefault printer installed in

order to preview reports.”, vbCritical + vbOKOnly, "Can't
Find A Printer"

End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class bresks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None

'Output: None

' With fwForm

'References: .hwnd = Forms(strFormName).hwnd
- clFormWindow "Top = ((.Parent. Top - .Top) / 2) + ((.Parent.Top - .Top) *
' 0.6)
! .Left = (.Parent.Width - .Width) / 2
Public Sub MoveToCenter(ByVad strFormName As String) End With

Set fwForm = Nothing
Dim fwForm As New clFormWindow
End Sub

212

FORMCLASS-2-0-2-1-frm-Summary

Option Compare Database
Option Explicit

'Reusable variable for creating combobox value lists
Dim tempvaluelist As String

'Used to track if combo boxes have been changed, but no
update has been performed.
Dim bUpdateNeeded As Boolean

'Variables for storing initial values.
'Used for tracking if the user actually changed something.
Dim sStoredAircraft As String

Dim sStoredType As String

Dim sStoredClass As String

Dim sStoredLocation As String
Dim sStoredOrganization As String
Dim vStoredY ear As Variant

Dim sStored1stL evel As String
Dim sStored2ndLevel As String
Dim sStored3rdLevel As String

FORM DESCRIPTION

'ClassName: 2-0-2-1-frm-Summary
‘Author: Pat Flanders & Scott Tufts

‘Thisclassis used to dipict thetable of factor vs. mishap
counts

‘and percentages. It allowsthe user to select criteriafrom
combo

'boxes and fills then cal culates the values for the table when
the

‘user clicks update.

'When the form opens, it populates the combo boxes by
running UNION

'queriesto build the recordsets needed to serve as control
SOUrces.

"Thisis necessary to add the "<AlI>" choice. The only
exception

'isthe"Year" combo box. It uses a string manipulation
function

'called popul ateComboBoxWithAll() to build avalue list.
This

'is necessary because the UNION method will only work
with norrinteger

'datatypes. The problem with the

popul ateComboBoxWithAll()

'method isthat it is limited in size to about 50 two
dimensional

‘entries. In addition, commas and semi-colons create
problems

‘and must be removed from the string during build.

'Finally, when the user clicks double clicks alabel in the
table,

‘codeis executed that builds the input string for stored
procedure

'2-0-1-1-flanCountflankilteredMishaps

‘which isthe recordsource for the 2-0-1-2-frm-ViewMishaps
form.

213

'this input string is then passed to the "view" formviaa
global
'variable and the viewMishaps form is opened.

'References:
' - 2-0-1-2-FrmViewMishaps
' - dFormWindow
' - ez_SizingFunctions
- GlobalDeclarations

Ykkkkkkkkhkkkkhkkkkhkkhkkkhkkhkkkhkkhkkkhkkhkkkhkkhkhkkhkhkkhkkhkhkhkhkkkhkkkhkkkxkx

' FUNCTIONS

Ykkkkkkkkhkkkkhkkkkhkkhkkkhkkhkkhkkhkhkkhkhkkhkhkhkhkkhkhkkkkhkkkhkkhkkkkkkx

'Function/Sub Name:

' - choAircraft_Change()
.. thru...

' - cboY ear_Change()

'Description: The next 9 subroutines are used to mark the
‘form asdirty (needing an update).Saves the state of the
'data (and size of the form)

'Input: None

‘Output: None

'References. None

Private Sub chboAircraft_Change()
bUpdateNeeded = True
End Sub

Private Sub choClass_Change()
bUpdateNeeded = True
End Sub

Private Sub choFactorsl_Change()
bUpdateNeeded = True
End Sub

Private Sub cbhoFactors2_Change()
bUpdateNeeded = True
End Sub

Private Sub cboFactors3_Change()
bUpdateNeeded = True
End Sub

Private Sub chol ocation_Change()
bUpdateNeeded = True
End Sub

Private Sub cboOrganization Change()
bUpdateNeeded = True
End Sub

Private Sub cboType_Change()
bUpdateNeeded = True
End Sub

Private Sub choY ear_Change()
bUpdateNeeded = True
End Sub

:Functi on/Sub Name: cmdClose_Click()
'‘Description: Closestheform.

:Input: None

:Output: None

'References. None

Private Sub cmdClose Click()
DoCmd.Close acForm, "2-0-2-1-frm-Summary"
End Sub

'Function/Sub Name: cmdUpdate_Click()

'Description: Updates all data on the form by calling
goGetUpdate().

'Input: None
'‘Output: None

'References:
- goGetUpdate()

Private Sub cmdUpdate_Click()
goGetUpdate
End Sub

'Function/Sub Name: Form_Activate()
:D&ecripti on: Update the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Activate()

Application.CommandBars("mnuCther").Visible = True
End Sub

"Function/Sub Name: Form_Close()

'Description: Closes the form.

214

'Input: None
‘Output: None

'References. None

Private Sub Form_Close()
Application.CommandBars("mnuCther").Visible = False
End Sub

'Function/Sub Name: Form_Deactivate()
:Deacri ption: Updates the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Deactivate()

Application.CommandBars("mnuOther").Visible = False
End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizestheform to the users
screen

'resolution and then centersit.

‘Input: None

‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()
'‘Dynamically resize the form based on screen resolution.
ezSizeForm Me, -1
MoveToCenter "2-0-2-1-frm-Summary"

End Sub

'Function/Sub Name: Form_Open()

'Description: Populates combo boxes. In order to alow the
combo

'boxes to offer <All> as a choice, 2 methods are

'needed -- one for integers and another for strings.

"The populateComboBoxWillAll() subroutine is used for
integers (like the Mishap
'Y ear), while stored procedures are used for strings.

'Important to note that the populateComboBoxWill All() will
not work for

'creating strings of more than about 50 entries because the
combo box

'regjects them astoo, long. Stored procedures, however, do
not suffer

'from thislimitation.

‘Input: None

‘Output: None

'References:
' - populateComboBoxWithAll()

Private Sub Form_Open(Cancel As|nteger)
Application.CommandBars("mnuCther").Visible = True

‘Aircraft

With Me.choAircraft
.RowSource = "9-0-0-2-flanL ookupAircraftAll"
Vaue="<All>"

End With

'Organization

With Me.cboOrganization
.RowSource = "9-0-0-2-flanL ookupOrgani zationAll"
Vdue="<All>"

End With

'Location

With Me.choL ocation
.RowSource = "9-0-0-2-flanL ookupL ocationAll"
Vaue="<All>"

End With

'Class category

With Me.cboClass
.RowSource = "9-0-0-2-flanL ookupClassAll"
Vaue="<All>"

End With

"Type category

With Me.cboType
.RowSource = "9-0-0-2-flanL ookupTypeAll"
Vdue="<All>"

End With

"Year (can't use UNION stored procedure to append <All>
becauseit is of type Integer)
populateComboBoxWithAll "9-0-0-2-
flanModifiedL ookupY ear”, 1
With Me.cboY ear
.RowSourceType = "VaueList"
.RowSource = tempvaluelist
Vaue="<All>"
End With

‘3rd Level factors

With Me.cboFactors3
.RowSource = "9-0-0-2-flanL ookupFactorsAll3Level"
Vaue="<All>"

End With

'2nd Levd factors

With Me.choFactors2
.RowSource = "9-0-0-2-flanL ookupFactorsAll2L evel"
Vaue="<All>"

End With

215

'1st Level factors

With Me.choFactorsl
.RowSource = "9-0-0-2-flanL ookupFactorsAll 1L evel"
Vaue="<All>"

End With

'Reset the update variable (because) the form is not dirty.
bUpdateNeeded = False
storeValues 'Store theinitia values of the combo boxes.

End Sub

'Function/Sub Name: popul ateComboBoxWithAll()

'‘Description: Makes a connection to the stored procedure
passed-in

‘and builds an string that can be used by a combo box to
disay

‘and "iNumberCol ToGet" column drop down list. It hasto
check

‘every record for commas and semi-colons in the data
becausethese

'two characters are interpreted by the combo box as
delimiters,

'so they must be replaced with some other character (a"-" is
what

'I'm using here).

'Input:

' sNameOfSP - Name of the Stored Procedure to
get

' the records from.

' iNumberCol ToGet - Number of columns of datato
read
' from the Stored Procedure.

'Output: None

'References:
- clFormWindow

Private Sub populateComboBoxWithAll(sNameOfSP As
String, _
iNumberCol ToGet As Integer)

'STEP 1 - Make a connection and get a recordset matching
the

'passed in parameters

Dim cnn As Connection

Dim oCmd As ADODB.Command

Dim rst As ADODB.Recordset

Set cnn = CurrentProject.Connection

cnn.CursorLocation = adUseClient

Set rst = New ADODB.Recordset

Set oCmd = New ADODB.Command

oCmd.ActiveConnection = cnn

oCmd.CommandText ="""" & sNameOfSP & """

oCmd.CommandType = adCmdStoredProc

Set rst = oCmd.Execute

‘Make sure tempvalue list is empty before adding to it.
tempvauelist =""

'STEP 2 - Build astring of all the values starting with
choice <All>.
Dimi As Integer
i=0
For i =0 To (iNumberCol ToGet- 1)
tempvduelist = "<All>;" & tempvaluelist 'Add <All>
Next

‘Now add the redl values
rst.MoveFirst
Do Until rs.EOF

Dimk As Integer

k=0

While k < iNumberCol ToGet

'STEP 3- Replace commas and semicolonswith
dashes becuase
'the mess up thelist
DimastrText As String
DimiCount AsInteger
'Check for null fields and only operate on those that
arenot null
If IsNull(rst.Fields(k)) Then
tempvaluelist = tempvaluelist & rst.Fields(k) & ";"
Else
astrText = Trim(rst.Fields(k))

' Loop through array, replacing commeas and
semicolons
For iCount = 1 To Len(astrText)

If Mid(astrText, iCount, 1) ="," Or
Mid(astrText, iCount, 1) =";" Then
' If array element satisfies wildcard search,
"replaceit.
Mid(agrText, iCount, 1) ="-"
End If
Next
" Join string.
tempvaluelist = tempvaluelist & astrText & ";"
End If
k=k+1
Wend
rst.MoveNext
Loop

rst.Close

Set rst = Nothing
Set oCmd = Nothing
cnn.Close

End Sub

'Function/Sub Name: goGetUpdate()

‘Description: Builds the input string to pass based on the
users

‘combo box selection and uses thisinformation to requery
'the underlying recordsource for thisform. Thisupdatesthe
'table to show the counts corresponding to the user's combo
box

‘criteria.

'Input: None

'Output: None

216

'References:
- gStrinputString

Private Sub goGetUpdate()
On Error GoTo Err_goGetUpdate

'Reset the global varigble
Global Declarations.gStrinputString = "

‘Build the input string to pass to the stored procedure
'to get the corred records.
'Order of these if statements must match the SP.
'If <All> was selected, then pass " so that the SP knows the
valueisNULL.
If Me.choAircraft.Vaue <> "<All>" Then
Global Declarations.gStrinputString =" @AC_Type
varchar(10)=" & Me.choAircraft.Vaue& ""
Else
Global Declarations.gStrinputString =" @AC_Type
varchar(10)=""
End If

If Me.cboTypeVaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Mishap_Type
varchar(3)="" & Me.cboTypeVaue & ""
Else
Global Declarations.gStrinputString =
GlobalDeclarations.gStrinputString & *, @Mishap_Type
varchar(3)=""
End If

If Me.cboClass.Vadue <> "<All>" Then
GlobalDeclarations.gStrlnputString =
Global Declarations.gStrinputString & *, @Mishap_Class
varchar(1)=" & Me.cbhoClass.Value & ""
Else
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & *, @Mishap_Class
varchar(1)=""
End If

I1f Me.choL ocation.Value <> "<All>" Then
Global Declarations.gStrl nputString =
Global Declarations.gStrinputString & ", @L ocation
varchar(25)="' & Me.cboLocation.Value& "™
Else
Global Declarations.gStrinputString =
GlobalDeclarations.gStrinputString & ", @Location
varchar(25)=""
End If

If Me.cboOrganization.Value <> "<AlI>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Service
varchar(10)="' & Me.cboOrganization.Vaue& "
Else
Global Declarations.gStrinputString =
GlobalDeclarations.gStrinputString & ", @Service
varchar(10)=""
End If

If Me.choY ear.Value <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & *, @Y ear int="' &
Me.cboYear.Vaue& "™

Else
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Y ear int=""
End If

If Me.choFactorsl.Value <> "<All>" Then
Global Declarations.gStrinputString =
Globa Declarat ions.gStrinputString & ", @1stLevel
varchar(5)="" & Me.choFactorsL.Vaue & "™
Else
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & "', @1stLevel
varchar(5)=""
End If

If Me.choFactors2.Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @2ndLevel
varchar(5)="' & Me.choFactors2.Vaue & ""
Else
Global Declarations.gStrinputString =
Globa Declarations.gStrinputString & ", @2ndLevel
varchar(5)="
End If

If Me.choFactors3.Value <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @3rdLevel
varchar(5)=" & Me.choFactors3.Vaue & ""
Else
Global Declarations.gStrl nputString =
Globel Declarations.gStrinputString & ', @3rdLevel
varchar(5)=""
End If

Me.InputParameters = Global Declarations.gStrlnputString
Me.Requery 'Update the form.

bUpdateNeeded = False 'Reset the forms dirty variable.
storeVaues

If MetxtMishapTotal = 0 Then
MsgBox "There are no records that match your search
criteria”, vbOKOnly + vblnformation, " Criteria Too
Restrictive"
End If

Exit_goGetUpdate:
Exit Sub
Err_goGetUpdate:
MsgBox ERR.Description
Resume Exit_goGetUpdate

End Sub

'Function/Sub Name: goGetRecords()

'Description: Builds theinput string to pass to the stored
procedure

'to get the correct records. Order of these if statements must
match the SP.

'If <All> was selected, then pass " so that the SP knowsthe
valueisNULL.

217

'Once theinput string is built, the 2-0-1-2-frm-ViewMishaps
form
'is opened.

‘Input: None
‘Output: None
'References:

' - 2-0-1-2-frm-ViewMishaps
- gStrinputString

Private Sub goGetRecords()
On Error GoTo Err_goGetRecords

'Reset the global variable
Global Declarations.gStrinputString = "

‘Build the input string to pass to the $ored procedure to get
the correct records.
'Order of these if statements must match the SP.
'If <All> was selected, then pass " so that the SP knows the
valueisNULL.
If Me.chboAircraft.Vaue <> "<All>" Then
Global Declarations.gStrinputString="@AC
varchar(10)=""' & Me.choAircraft.Vaue& ""
Else
Global Declarations.gStrinputString = "@AC
varchar(10)=""
End If

If MecboType Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Type
varchar(3)="" & Me.cbhoTypeVaue & ""
Else
Global Declarations.gStrinputString =
Globa Declarations.gStrinputString & ", @Type
varchar(3)=""
End If

If Me.choClass.Vaue <> "<All>" Then
Globa Declarations.gStrlnputString =
Global Declarations.gStrinputString & *, @Class
varchar(1)=" & Me.cboClassVaue & ""
Else
Global Declarations.gStrl nputString =
Global Declarations.gStrinputString & ", @Class
varchar(1)=""
End If

If Me.cboLocation.Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Loc
varchar(25)="" & Me.cboLocation.Vaue& "
Else
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Loc
varchar(25)=""
End If

If Me.choOrganization.Vaue <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @Svc
varchar(10)=""' & Me.cboOrganization.Vaue& ""
Else

Global Declarations.gStrInputString =
Global Declarations.gStrinputString & ", @Sve
varchar(10)=""

End If

If Me.choY ear.Value <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & *, @Yr int="' &
Me.cboYear.Vaue& "
Else
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & *, @Y int=""
End If

If Me.choFactorsl.Value <> "<All>" Then
Global Declarations.gStrl nputString =
Global Declarations.gStrinputString & ", @1stLevel
varchar(5)="" & Me.choFactorsl.Value & "
Else
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & "', @1stLevel
varchar(5)=""
End If

If Me.choFactors2.Value <> "<All>" Then
Global Declarations.gStrinputString =
Global Declarations.gStrinputString & ", @2ndLevel
varchar(5)=" & Me.cboFactors2.Vaue & ""
Else
Global Declarations.gStrinputString =
GlobaDeclarations.gStrinputString & ", @2ndLevel
varchar(5)=""
End If

If Me.cboFactors3.Vaue <>"<All>" Then
Global Declarations.gStrinputString =
GlobalDeclarations.gStrinputString & ", @3rdLevel
varchar(5)=" & Me.choFactors3.Vaue & ""
Else
Global Declarations.gStrinputString =
GlobalDeclarations.gStrinputString & *, @3rdLevel
varchar(5)=""
End If

'Set flag to tell the ViewMishaps form to use the correct
SPfor viewing factor category recordsets.

Global Declarations.bUseHFA CSSummaryQuery = True

DoCmd.OpenForm "2-0-1-2-frm-ViewMishaps'

Exit_goGetRecords:
Exit Sub

Err_goGetRecords:
MsgBox ERR.Description
Resume Exit_goGetRecords

End Sub

'Function/Sub Name: goGetRecords()

'‘Description: Store the values of the filter boxes on form open
and

‘after every update so that you have something to compare
current valuesto.

"Thisway, you can trap when users make changes.

218

'Input: None
'Output: None

'References. None

Private Sub storeValues()

sStoredAircraft = Me.choAircraft.Vdue
sStoredType = Me.choType.Vaue

sStoredClass = Me.cboClass.Vaue

sStoredL ocation = Me.choL ocation.Value
sStoredOrganization = Me.cboOrganization.Vaue
vStoredY ear = Me.choY ear.Vaue
sStored1stl evel = Me.choFactorsl.Vaue
sStored2ndL evel = Me.cboFactors2.Vaue
sStored3rdLevel = Me.choFactors3.Vdue

End Sub

'Function/Sub Name: checklIfFormlisDirty()

'‘Description: If the user changed values in the combo boxes
but has not

'updated the form, tell him about it and give the option to
refresh

'before viewing records. If you don't do this, then the user
might

'change the combo box criteriaand then forget to hit the
update

‘button before double-clicking one of the boxes. This could
create

‘confusing results.

‘Input: None
‘Output: None

'References. None

Private Sub checklfFormlsDirty()
If bUpdateNeeded = True Then

If sStoredAircraft <> Me.cboAircraft.Value Or _

sStoredType <> Me.cboType.Vaue Or _

sStoredClass <> Me.cboClass.Vaue Or _

sStoredL ocation <> Me.choL ocation.Value Or _

sStoredOrgani zation <> Me.cboOrganization.Value
Or

vStoredY ear <> Me.cboY ear.Vaue Or _

sStoredl1stl evel <> Me.choFactorsl.VadueOr _

sStored2ndLevel <> Me.choFactors2.Vaue Or _

sStored3rdLevel <> Me.cboFactors3.Value Then

Dim response As Variant

response = MsgBox("Y ou have changed selection
criteriabut not clicked the UPDATE button to refresh the
data" & Chr(13) & Chr(13) & "Do you want to update the
datawith the new criteria?", vbY esNo + vbQuegion +
vbDefaultButtonl, "Form Needs Update'")

If response = vbY es Then

goGetUpdate

Else 'Set the comboboxes to the old values.
Me.choAircraft.Vaue = sStoredAircraft
Me.cboType.Vaue = sStoredType
Me.choClass.Vaue = sStoredClass
Me.cholL ocation.Vaue = sStoredL ocation
Me.choOrganization.Value =

sStoredOrganization
Me.choY ear.Vaue = vStoredY ear
Me.cboFactorsl.Vaue = sStored1stL evel
Me.choFactors2.Value = sStored2ndL evel
Me.choFactors3.Value = sStored3rdL evel
End If
End If

End If

End Sub

"Function/Sub Name:

' - IblADA_DblClick()
' ..thru ...

' - tXtPRES_DblClick()

'‘Description: Private subs-for detecting box double clicks
T‘Ic')urgglwbrouti nes are needed for each box. Onefor the label
‘and one form each text box (number and percentage).

:Input: None

:Output: None

'References. None

Private Sub IblADA_DbIClick(Cancel As Integer)
If MetxtADA.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "ADA"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IbIASS Dbl Click(Cancel As Integer)
If MetxtASSValue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vdue = "ASS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbIATT_DbIClick(Cancel As Integer)
If MetxtATT.Vaue=0 Then
MsgBox "There are no records inthat category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"

219

Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vdue ="ATT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IblCON_DbIClick(Cancel As Integer)
If Me.txtCON.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "CON"
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbICRT_DblClick(Cancel As Integer)
If MetxtCRT.Value =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "CRT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblCRW_DblClick(Cancel As Integer)
If MetxtCRW.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors2.Vaue = "CRW"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub IbIDES Dbl Click(Cancel As Integer)
If MetxtDES.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
MechoFactors3.Value = "DES'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IbiDMG_DblClick(Cancel As Integer)
If MetxtDMG.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty

Me.choFactors3.Vaue = "DMG"

goGetRecords

Me.cboFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IbIDOC_DblClick(Cancel As Integer)
If MetxtDOC.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "DOC"
goGetRecords
Me.choFactors3.Value = sStored3rdL evel
End Sub

Private Sub IbIDUC_DblClick(Cancel As Integer)
If MetxtDUC.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "DUC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IblIEHZ_DbIClick(Cancel As Integer)
If MetxtEHZ.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.cboFactors3.Vaue ="EHZ"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbIENV_DbIClick(Cancd As Integer)
If MetxtENV.Vdue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors2.Vaue = "ENV"
goGetRecords
Me.choFactors2.Vaue = sStored2ndL evel
End Sub

Private Sub IblEQP_DblClick(Cancel As Integer)
If MetxtEQP.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors2.Vaue = "EQP"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel

220

End Sub

Private Sub IbIERR_DblClick(Cancel As Integer)
If MetxtERR.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors2.Vaue = "ERR"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub IbIEXC_DblClick(Cancel AsInteger)
If MetxtEXC.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "EXC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IbIFLG_DblClick(Cancel As Integer)
If MetxtFLG.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue ="FLG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblIDQ_DblClick(Cancel As Integer)
If MetxtiDQ.Vaue=0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "IDQ"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IbIINA_DbIClick(Cancel As Integer)
If MeitxtINA.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "INA"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblINF_DblClick(Cancel As Integer)

If MetxtINF.Value =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Value = "INF'
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub I1bIJDG_DblClick(Cancel As Integer)
If MetxtIDG.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vdue ="IDG"
goGetRecords
Me.cboFactars3.Vaue = sStored3rdLevel
End Sub

Private Sub IbILGT_DbIClick(Cancel As Integer)
If MetxtLGT.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue="LGT"
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbILIM_DblClick(Cancel As Integer)
If MetxtLIM.Vaue =0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue="LIM"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbIMA_DblClick(Cancel As Integer)
If MetxtMA .Vaue =0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactorsl.Vaue="MA"
goGetRecords
Me.choFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub IbIMC_DblClick(Cancel As Integer)
If MetxtMC.Vdue=0 Then

221

MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"

Exit Sub

End If

checkIfFormisDirty

Me.choFactorsl.Vaue = "MC"

goGetRecords

Me.choFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub IbIMED_DbIClick(Cancel As Integer)
If MetxtMED.Value=0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors2.Vaue = "MED"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub IbIMG_DblClick(Cancel As Integer)
If MetxtMG.Value= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactorsl.Value = "MG"
goGetRecords
Me.choFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub IbIMIS_DbIClick(Cancel As Integer)
If MetxtMISValue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteiaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFectors3.Value = "MIS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbIMNT_DbIClick(Cancel As Integer)
If MetxtMNT.Vaue=0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue ="MNT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbIRDY _DblClick(Cancel As Integer)
If MetxtRDY .Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"

Exit Sub
End If
checklfFormisDirty
Me.cboFactors2.Vdue ="RDY"
goGetRecords
Me.choFactors2.Vaue = sStored2ndL evel
End Sub

Private Sub IblROU_DbIClick(Cancel As Integer)
If Me.txtROU.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "ROU"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbISKL_DblIClick(Cancel As Integer)
If MetxtSKL.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "SKL"
goGetRecords
Me.cboFact ors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbISUP_DblClick(Cancel As Integer)
If Me.txtSUP.Value=0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors2.Vaue = "SUP"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub IbITRG_DblClick(Cancel As Integer)
If MetxtTRG.Vaue =0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "TRG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IbIPHY_DblClick(Cancel As Integer)
If MetxtPHY .Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty

222

Me.choFactors3.Vaue = "PHY"

GetRecords

Me.cboFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblCOM_DblIClick(Cancel As Integer)
If MetxtCOM.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Regtrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "COM"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblVIO_DblClick(Cancel As Integer)
If MetxtVIO.Vaue=0 Then
MsgBox "Theae are no records in that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors2.Vaue ="V10"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub IblWC_DblClick(Cancel As Integer)
If MetxtWC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFact orsl.Vaue = "WC"
goGetRecords
Me.choFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub IbIWRK_DblClick(Cancel As Integer)
If MetxtWRK.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors2.Vaue = "WRK"
goGetRecords
Me.choFactors2.Vaue = sStored2ndL evel
End Sub

Private Sub IblWXE_DblClick(Cancel As Integer)
If MetxtWXE.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue = "WXE"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel

End Sub

Private Sub IbIKNW_DblClick(Cancel As Integer)
If MetxtKNW.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFectors3.Vaue = "KNW"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblIFC_DblClick(Cancel As Integer)
If MetxtlFC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Value = "IFC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblOBS_DblClick(Cancel As Integer)
If MetxtOBS.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue ="OBS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IbIUNA_DbIClick(Cancel As Integer)
If MetxtUNA .Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "UNA"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblIOPS_DblClick(Cancel As Integer)
If MetxtOPS.Value= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "OPS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub IblORG_DblIClick(Cancel As Integer)

223

If MetxtORG.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.cboFactors2.Value = "ORG'
goGetRecords
Me.cboFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub IbIPRB_DblClick(Cancel As Integer)
If MetxtPRB.Vdue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue = "PRB"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbIPRO_DblClick(Cancel As Integer)
If MetxtPRO.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue = "PRO"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub IbIRES Dbl Click(Cancel As Integer)
If Me.txtRES.Value = 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue = "RES'
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

'Number text boxes start here.

Private Sub txtADA_DblIClick(Cancel As Integer)
If MetxtADA.Vaue=0 Then
MsgBox "There are no records in that cat egory to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checkIfFormlsDirty
Me.choFactors3.Vaue = "ADA"
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtASS_DblClick(Cancel AsInteger)
If MetxtASSValue=0 Then

MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"

Exit Sub

End If

checkIfFormisDirty

Me.choFactors3.Vadue = "ASS'

goGetRecords

Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtATT_DblClick(Cancel As Integer)
If MetxtATT.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive'
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue="ATT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtCON_DblClick(Cancel As Integer)
If MetxtCON.Value=0 Then
MsgBox "Thereare no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "CON"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtCRT_DblClick(Cancel As Integer)
If MetxtCRT.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactars3.Vaue = "CRT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtCRW_DDblIClick(Cancel As Integer)
If MetxtCRW.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors2.Vaue = "CRW"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtDES Dbl Click(Cancel As Integer)
If MetxtDES.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"

224

Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue = "DES'
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtDMG_DblClick(Cancel As Integer)
If MetxtDMG.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklIfFormlsDirty
Me.cboFactors3.Vaue = "DMG"
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtDOC_DblClick(Cancel As Integer)
If Me.txtDOC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "DOC"
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtDUC_DblClick(Cancel As Integer)
If Me.txtDUC.Vaue=0Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "DUC"
goGetRecords
MechoFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtEHZ_DblClick(Cancel As Integer)
If MetxtEHZ.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Qub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "EHZ"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtENV_DblClick(Cancel As Integer)
If MetxtENV.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty

Me.choFactors2.Vaue = "ENV"

goGetRecords

Me.cboFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtEQP_DblClick(Cancel As Integer)
If MetxtEQP.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors2.Value = "EQP"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtERR_DblClick(Cancel As Integer)
If MetxtERR.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cbhoFactors2.Vaue = "ERR"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtEXC_DblClick(Cancel As Integer)
If MetxtEXC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "EXC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtFLG_DblClick(Cancel As Integer)
If MetxtFLG.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "FLG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtIDQ_DbIClick(Cancel As Integer)
If MetxtIDQ.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbEx clamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue = "IDQ"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel

225

End Sub

Private Sub txtINA_DbIClick(Cancel As Integer)
If MetxtINA.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "INA"
goGetRecords
Me.choFactors3.Value = sStored3rdL evel
End Sub

Private Sub txtINF_DblClick(Cancel As Integer)
If MetxtINF.Vaue = 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "INF"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtJDG_DblClick(Cancel As Integer)
If MetxtIDG.Value =0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "IDG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtLGT_DbIClick(Cancel As Integer)
If MetxtLGT.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue="LGT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtLIM_DblClick(Cancel As Integer)
If MeitxtLIM.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cbhoFactors3.Vaue="LIM"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtMA_DblClick(Cancel As Integer)

If MetxtMA .Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.cboFactorsl.Vaue="MA"
goGetRecords
Me.cboFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub txtMC_DblClick(Cancel As Integer)
If MetxtMC.Vdue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactorsl.Value ="MC"
goGetRecords
Me.chboFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub txtMED_DblClick(Cancel As Integer)
If MetxtMED.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaT 0o
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors2.Vaue = "MED"
goGetRecords
Me.cboFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtMG_DblClick(Cancel As Integer)
If MetxtMG.Value = 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactorsl.Vaue="MG"
goGetRecords
Me.cboFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub txtM1S_DblClick(Cancel As Integer)
If MetxtMIS.Vaue=0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFectors3.Vaue = "MIS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtMNT_DblClick(Cancel As Integer)
If MetxtMNT.Vaue=0 Then

226

MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"

Exit Sub

End If

checkIfFormisDirty

Me.choFactors3.Vaue="MNT"

goGetRecords

Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPROU_DblClick(Cancel As Integer)
If MetxtROU.Value= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "ROU"
goGetRecords
Me.cboFactors3.Value = sStored3rdL evel
End Sub

Private Sub txtPSKL_DblClick(Cancel As Integer)
If MetxtSKL.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "SKL"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtRDY _DblClick(Cancel As Integer)
If MetxtRDY .Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors2.Vaue = "RDY"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtROU_DblClick(Cancel AslInteger)
If Me.txtROU.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "ROU"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtSKL_DblClick(Cancel As Integer)
If MetxtSKL.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"

Exit Sub
End If
checklfFormlsDirty
Me.cboFactors3.Vaue ="SKL"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtSUP_DblClick(Cancel As Integer)
If Me.txtSUP.Value=0 Then
MsgBox "There areno records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors2.Vaue = "SUP"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtTRG_DblClick(Cancel As Integer)
If MetxtTRG.Vadue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Value = "TRG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPHY _DblClick(Cancel As Integer)
If MetxtPHY .Vaue=0 Then
MsgBox "There are no records in that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "PHY"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtCOM_DblClick(Cancel As Integer)
If MetxtCOM.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "COM"
goGetRecords
Me.choFactors3.Value = sStored3rdL evel
End Sub

Private Sub txtV1O_DblClick(Cancel As Integer)
If MetxtVIO.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty

227

Me.choFactors2.Vaue = "VIO"

goGetRecords

Me.cboFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtWC_DblClick(Cancel As Integer)
If MetxtWC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactorsl.Vaue = "WC"
goGetRecords
Me.choFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub txtWRK_DblClick(Cancel As Integer)
If MetxtWRK.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors2.Vaue = "WRK"
goGetRecords
Me.choFactors2.Vaue = sStored2ndL evel
End Sub

Private Sub txtWXE_DDblClick(Cancel As Integer)
If MetxtWXE.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.chboFactors3.Vaue = "WXE"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtK NW_DblClick(Cancel As Integer)
If Me.txtKNW.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "KNW"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtIFC_DblClick(Cancel AsInteger)
If Me.txtIFC.Value= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "IFC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel

End Sub

Private Sub txtOBS Dbl Click(Cancel As Integer)
If MetxtOBS.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restridive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "OBS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtUNA_DbIClick(Cancel As Integer)
If MetxtUNA.Vaue=0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "UNA"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtOPS_DblClick(Cancel As Integer)
If MetxtOPS.Value =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFectors3.Vaue = "OPS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtORG_DblClick(Cancel As Integer)
If MetxtORG.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamat ion, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors2.Vaue = "ORG"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPRB_DblClick(Cancel As Integer)
If MetxtPRB.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "PRB"
goGetRecords
Me.choFactors3.Value = sSored3rdL evel
End Sub

Private Sub txtPRO_DblClick(Cancel As Integer)

228

If MetxtPRO.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checkIfFormIsDirty
Me.cboFactors3.Vaue = "PRO"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtRES Dbl Click(Cancel As Integer)
If Me.txtRES.Vaue = 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "RES'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

'Percentage textboxes start here.

Private Sub txtPADA_DblClick(Cancel As Integer)
If MetxtADA.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vdue = "ADA"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPASS_DblClick(Cancel As Integer)
If MetxtASSValue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, " CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vdue = "ASS'
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPATT_DblClick(Cancel As Integer)
If MetxtATT.Value=0Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checkIfFormlsDirty
Me.cboFactors3.Vaue="ATT"
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPCON_DblClick(Cancel As Integer)
If Me.txtCON.Vaue=0 Then

MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"

Exit Sub

End If

checklfFormlIsDirty

Me.cboFactors3.Vaue = "CON"

goGetRecords

Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPCRT_DblClick(Cancel As Integer)
If MetxtCRT.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue ="CRT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPCRW_DblClick(Cancel As Integer)
If MetxtCRW.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors2.Vaue = "CRW"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPDES Dbl Click(Cancel As Integer)
If MetxtDESVaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "DES'
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPDMG_DblClick(Cancel As Integer)
If MetxtDMG.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "DMG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPDOC_DblClick(Cancel AsInteger)
If MetxtDOC.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"

229

Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Value = "DOC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPDUC_DblIClick(Cancel As Integer)
If Me.txtDUC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "DUC"
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPEHZ_DblClick(Cancel As Integer)
If MetxtEHZ.Vaue =0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "EHZ"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPENV_DblClick(Cancel As Integer)
If MetxtENV.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors2.Vaue = "ENV"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPEQP_DblClick(Cancel As Integer)
If MetxtEQP.Vaue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors2.Vaue = "EQP"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPERR_DbIClick(Cancel As Integer)
If MetxtERR.Vaue=0Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty

Me.choFactors2.Vaue = "ERR"

goGetRecords

Me.choFactors2.Vaue = sStored2ndL evel
End Sub

Private Sub txtPEXC_DblClick(Cancel As Integer)
If MetxtEXC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "EXC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPFLG_DblClick(Cancel As Integer)
If MetxtFLG.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue ="FLG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPIDQ_DblClick(Cancel As|nteger)
If MetxtIDQ.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.cboFactors3.Vaue = "IDQ"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPINA_DblClick(Cancel As Integer)
If MetxtINA.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "INA"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPINF_DblClick(Cancel As Integer)
If MetxtINF.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFectors3.Vaue = "INF"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel

230

End Sub

Private Sub txtPIDG_DblClick(Cancel As Integer)
If MetxtIDG.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFectors3.Vdue = "IDG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPLGT_DbIClick(Cancel As Integer)
If MetxtLGT.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue="LGT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPLIM_DblClick(Cancel As Integer)
If MeitxtLIM.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue="LIM"
goGetRecords
Me.choFactors3.Value = sStored3rdL evel
End Sub

Private Sub txtPMA_DblClick(Cancel As Integer)
If MetxtMA.Value= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactorsL.Vaue="MA"
goGetRecords
Me.choFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub txtPMC_DblClick(Cancel As Integer)
If MetxtMC.Vaue=0 Then
MsgBox "There are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactorsl.Vaue = "MC"
goGetRecords
Me.choFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub txtPMED_DblClick(Cancel As | nteger)

If MetxtMED.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.cboFactors2.Vaue = "MED"
goGetRecords
Me.cboFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPMG_DblClick(Cancel As Integer)
If MetxtMG.Vaue = 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactorsl.Vaue="MG"
goGetRecords
Me.chboFactorsl.Vaue = sStored1stL evel
End Sub

Private Sub txtPMIS_DblClick(Cancel As Integer)
If MetxtMIS.Vaue =0 Then
MsgBox "There are norecordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Value = "MIS'
goGetRecords
Me.cboFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPMNT_DblClick(Cancel As Integer)
If MetxtMNT.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Value = "MNT"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPRDY _DblClick(Cancel As Integer)
If Me.txtRDY .Vaue =0 Then
MsgBox "There are no records in that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFectors2.Vaue ="RDY"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPSUP_DblClick(Cancel As Integer)
If Me.txtSUP.Value=0 Then

231

MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"

Exit Sub

End If

checkIfFormisDirty

Me.choFactors2.Vaue = "SUP"

goGetRecords

Me.choFactors2.Value = sStored2nd_evel
End Sub

Private Sub txtPTRG_DblClick(Cancel As Integer)
If MetxtTRG.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.cboFactors3.Vaue = "TRG"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPPHY _DblClick(Cancel As Integer)
If MetxtPHY .Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "PHY"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPCOM_DblClick(Cancel As Integer)
If MetxtCOM.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.cboFactors3.Vaue = "COM"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPVIO_DblClick(Cancel As Integer)
If MetxtVIO.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors2.Vaue ="VI0"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPWC_DblClick(Cancel As Integer)
If MetxtWC.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Redtrictive"

Exit Sub
End If
checklfFormlsDirty
Me.cboFactorsl.Vaue ="WC"
goGetRecords
Me.choFactorsl.Vdue = sStored1stL evel
End Sub

Private Sub txtPWRK_DblIClick(Cancel AsInteger)
If MetxtWRK.Vaue=0Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Redtrictive"
Exit Sub
End If
checklfFormlsDirty
Me.cboFactors2.Value = "WRK"
goGetRecords
Me.cboFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPWXE_DblClick(Cancel As Integer)
If MetxtWXE.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vaue = "WXE"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPKNW_DblIClick(Cancel As Integer)
If Me.txtKNW.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFectors3.Vaue = "KNW"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPIFC_DbIClick(Cancel As Integer)
If MetxtIFC.Value=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "IFC"
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPOBS_DblClick(Cancel As Integer)
If MetxtOBS.Value =0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty

232

Me.choFactors3.Vaue = "OBS'

goGetRecords

Me.cboFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPUNA_DblIClick(Cancel As Integer)
If MetxtUNA.Vaue=0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "UNA"
goGetRecords
Me.choFactors3.Value = sStored3rdL evel
End Sub

Private Sub txtPOPS_DblClick(Cancel As Integer)
If MetxtOPSValue= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOKOnly + vbExclamation, "Criteria Too
Restrictive"
Exit Sub
End If
checkIfFormisDirty
Me.choFactors3.Vaue = "OPS'
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel
End Sub

Private Sub txtPORG_DblClick(Cancel As Integer)
If MetxtORG.Vaue =0 Then
MsgBox "There are no records in that cat egory to
view.", vbOK Only + vbExclamation, " Criteria Too
Redtrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors2.Vaue = "ORG"
goGetRecords
Me.choFactors2.Vaue = sStored2ndLevel
End Sub

Private Sub txtPPRB_DblIClick(Cancel As Integer)
If Me.txtPRB.Vaue =0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "PRB"
goCetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

Private Sub txtPPRO_DblClick(Cancel As Integer)
If Me.txtPRO.Value= 0 Then
MsgBox "There are no recordsin that category to
view.", vbOK Only + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormlsDirty
Me.choFactors3.Vdue = "PRO"
goGetRecords
Me.choFactors3.Vaue = sStored3rdLevel

End Sub

Private Sub txtPRES Dbl Click(Cancel As Integer)
If MetxtRES.Value=0 Then
MsgBox "Thee are no records in that category to
view.", vbOKOnly + vbExclamation, "CriteriaToo
Restrictive"
Exit Sub
End If
checklfFormisDirty
Me.choFactors3.Vaue = "RES'
goGetRecords
Me.choFactors3.Vaue = sStored3rdL evel
End Sub

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsitsown version of
this

233

'function so that minor adjustments can be made on aform by
form

‘basis.

‘Input: None

‘Output: None

'References:
' - clFormWindow

Public Sub MoveToCenter(ByVa strFo rmName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-4-0-1-0-frm-ExpertGraph

Option Compare Database
Option Explicit

FORM DESCRIPTION

'Class Name: 4-0-1-0-frm-Expert Graph
'Author: Pat Flanders & Scott Tufts
"Thisclassisused to select the X and Y axis criteriaand pass

'the users selections to global variablesthat the
'4-0-1-2-frm-TheA ctua Graph can use to display the graph.

'References:

- 4-0-1-2-frm-TheActua Graph
- clFormWindow

- ez_SizingFunctions

' - GlobaDeclarations

Tkkkkkhkhkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkkkkk

' FUNCTIONS

Tkkkkkhkkkkhkkhkkhkkhkkhkkhkhhkhkhhkhhhkhhhkhhhhhhkhhhkhhhkhdhkhhhhixkx

'Function/Sub Name:

' - cmdClose_MouseMove()
' ..thru...

' - cmdGraph_MouseMove()

'Description: Changes the color of the command button text
'in response to a mouse move event.

‘Input: None
‘Output: None

'References: None

Private Sub cmdClose_MouseMove(Button As Integer, Shift
As Integer, X AsSingle, Y As Single)
' Make the button text blue when it gets the focus
Me.cmdGraph.ForeColor = QBColor(0)
Me.cmdClose.ForeColor = QBColor(9)
End Sub
Private Sub cmdGraph_MouseMove(Button As Integer, Shift
As Integer, X AsSingle, Y As Single)

' Make the button text blue when it gets the focus
Me.cmdGraph.ForeColor = QBColor(9)
Me.cmdClose.ForeColor = QBColor(0)

End Sub

'Function/Sub Name: cmdGraph_Click()

234

'Description: Passesthe appropriatefield names
corresponding to

'user choicesfor X and Y axis graph criteriato global
variables

‘for the 4-0-1-2-frm-TheActual Graph form to actually create
the

:graph.

‘Input: None

:Output: None

'References:

: - 4-0-1-2-frm-TheActua Graph

- Globa Declarations.gStrX FieldToGraph
' - Globa Declarations.gStrY FieldToGraph

Private Sub cmdGraph_Click()

If MefraX.Vaue = MefraY.Vaue Then
MsgBox "Y our selections for the X and Y axis must be
different.", vbOKOnly + vbExclamation, "Choose Different
Vaues'
Exit Sub
End If

Sdlect Case MefraX.Vaue
Case 1 'Aircraft
If Me.chkUseCodesX.Vaue = True Then
GlobalDeclarations.gStrX FieldToGraph =
"Aircraft_ FK"
Else
GlobalDeclarations.gStrX FieldToGraph =
"Aircraft_FK"
End If
Case 2 'Organization
If Me.chkUseCodesX.Vaue = True Then
Global Declarations.gStrX FieldToGraph =
"OrgID_FK"
Else
GlobalDeclarations.gStrX FieldToGraph =
"OrgName"
End If
Case 3'Location
If Me.chkUseCodesX.Vaue = True Then
GlobalDeclarations.gStrX FieldToGraph =
"LocationID_FK"
Else
Globa Declarations.gStrXFieldToGraph =
"MishapL ocation”
End If
Case 4 'Class
If Me.chkUseCodesX.Vaue = True Then
GlobalDeclarations.gStrX FieldToGraph =
"Class FK"
Else
Globa Declarations.gStrX FieldToGraph =
"MishapClassDefinition"
End If
Case 5 'Type
If Me.chkUseCodesX.Vaue = True Then
Globa Declarations.gStrX FieldToGraph =
"Type FK"

Else

GlobalDeclarations.gStrX FieldToGraph =
"MishapTypeDefinition"
End If
Cae6'Year

If Me.chkUseCodesX.Vaue = True Then
GlobaDeclarations.gStrXFieldToGraph ="Y ear"

Else
Globa Declarations.gStrX FieldToGraph = "Y ear"

End If

End Sdlect

Sdlect Case MefraY.Vaue
Case 1'Aircraft
If Me.chkUseCodesY .Vaue = True Then
Globa Declarations.gStrY FieldToGraph =
"Aircraft_FK"
Else
GlobalDeclarations.gStrY FieldToGraph =
"Aircraft_FK"
End If
Case 2 'Organization
If Me.chkUseCodesY .Vaue = True Then
Globel Declarations.gStrY FieldToGraph =
"OrgID_FK"
Else
GlobalDeclarations.gStrY FieldToGraph =
"OrgName"
End If
Case 3 'Location
If Me.chkUseCodesY .Vaue = True Then
GlobaDeclarations. gStrY FieldToGraph =
"LocationID_FK"
Else
Globa Declarations.gStrY FieldToGraph =
"MishapL ocation”
End If
Case 4 'Class
If Me.chkUseCodesY .Vaue = True Then
Global Declarations.gStrY FieldToGraph =
"Class FK"
Else
GlobalDeclarations.gStrY FieldToGraph =
"MishapClassDefinition"
End If
Case 5 'Type
If Me.chkUseCodesY .Vaue = True Then
GlobalDeclarations.gStrY FieldT oGraph =
"Type_FK"
Else
GlobalDeclarations.gStrY FieldToGraph =
"MishapTypeDefinition”
End If
Case 6 'Year
If Me.chkUseCodesY .Vaue = True Then
GlobalDeclarations.gStrY FieldToGraph ="Y ear"
Else
GlobalDeclarations.gStrY FieldToGraph = "Y ear”
End If
End Sdlect

DoCmd.OpenForm " 7-0-0-1-PopUpFrm-
waitProgressBar", acNormal, ", ", acReadOnly, acNormal
DoCmd.RepaintObject acForm, "7-0-0-1-PopUpFrm-

waitProgressBar"
DoCmd.OpenForm "4-0-1-2-frm-TheA ctua Graph"
DoCmd.Close acForm, "7-0-0-1-PopUpFrm-
waitProgressBar"

End Sub

'Function/Sub Name: Form_Activate()
:Description: Update the menu bar.
'Input: None

:Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuOther").Visible = True
End Sub

:Function/&;b Name: Form_Deactivate()
'Description: Updates the menu bar.
:Input: None

'Output: None

'References. None

Private Sub Form_Deactivate()
Application.CommandBars("mnuOther").Visible = False
End Sub

'Function/Sub Name: Form_Close()
:Dacription: Closes the form.
'Input: None

:Output: None

'References. None

Private Sub Form_Close()

Applicat ion.CommandBars("mnuCther").Visible = Fase

Application.CommandBars("mnuProgramMain”).Visible =
True

Formsl[MainMenu].Visible = True

End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "4-0-1-0-frm-ExpertGraph"
End Sub

'Function/Sub Name: Form_Open()

'‘Description: Updates the menu bar and sets the focus to the
'close button.

‘Input: None
‘Output: None

'References. None

Private Sub Form_Open(Cancel As Integer)

Formsl[MainMenu].Visible = False
Application.CommandBars("mnuCther").Visible = True

' Make the button text blue when it gets the focus
Me.cmdGraph.ForeColor = QBColor(0)
Me.cmdClose.ForeColor = QBColor(0)
Me.cmdClose. SetFocus

End Sub

:Functi on/Sub Name: cmdClose_Click
'‘Description: Closestheform.

:Input: None

‘Output: None

'References. None

236

Private Sub cmdClose_Click()
On Error GoTo Err_cmdClose Click
DoCmd.Close acForm, "'4-0-1-0-frm-ExpertGraph”

Exit_cmdClose_Click:
Exit Sub

Err_cmdClose_Click:
MsgBox ERR.Description
Resume Exit_cmdClose Click

End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

‘function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
‘Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVad strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-4-0-1-2-frm-TheActual Graph

Option Compare Database
Option Explicit

'Reusable variable for opening a connection
Dim cnn As Connection

'Reusable variable for opening a connection used in
conjunction

‘with cnn.

Dim oCmd As ADODB.Command

'Reusable variable for recordset operations
Dimrst AsADODB.Recordset

'Arrays for storing user selections from the "Select X Values'
‘and "Select Y Values' list boxes.

Dim aryltemsSelectedX () As Integer

Dim aryltemsSelectedY () As Integer

' FORM DESCRIPTION

'ClassName: 4-0-1-2-frm-TheActua Graph

'‘Author: Pat Flanders & Scott Tufts

'‘Description: Uses the M SChart20 Active-X control to create
a

‘graph based upon globalvariables passed from the
'4-0-1-0-frm-ExpertGraph form.

"The MSChart20 control creates a graph based upon valuesin
its

'‘DataGrid. Thedatagrid isnot visible and must be popul ated
‘completely viacode. Various methodsin this class are used
'to popul ate the datagrid and then show portions of it based
‘on input from the user.

"The datagrid data is obtained from the RAC (Replacement
For

'Access Crosstab) stored proceduresto create the crosstab
results

'based on the values of

Global Declarations.gStrX FieldToGraph and

'Global Declarations.gStrY FieldToGraph

'References:

' - MSChart2.0 Active X control.
- clFormWindow

- ez_SzingFunctions

- GlobaDeclarations

TRA A KA KK A AR A KR A AR A IR A IR A IR A IR A kA hkhkhkkhkhkkhkhkkkhkkkkkx

FUNCTIONS

TR AR A AR A AR A AR A IR A IR A AR A IR A Ak kA hkhkhkhkhkkhkhkkkhkkkkkx

'Function/Sub Name: chkStack_AfterUpdate()

237

'‘Description: Sets the Stacking option of the M SChart
control

'in response to a checkbox update.

'Input: None

'Output: None

'References. None

Private Sub chkStack_AfterUpdate()

Turn stacking on or off
If Me.chkStack.Value = True Then
Me.chtTheGraph.Stacking = True
Else
Me.chtTheGraph.Stacking = False
End If

End Sub

'Function/Sub Name: chkTranspose AfterUpdate()
'Description: Sets the DataSerieslnRow option of the
MSChart control

'in response to a checkbox update.

'Input: None

'‘Output: None

'References. None

Private Sub chkTranspose AfterUpdate()

Turn transpose of X and Y axis on or off
If Me.chkTranspose.Value = True Then
Me.chtTheGraph.Plot.DataSeriesinRow = True
Else
Me.chtTheGraph.Plot.DataSeriesinRow = False
End If

End Sub

'Function/Sub Name: chtTheGraph L ostFocus()
'Description: Updates the "Tips' label with information for
the

‘user.

‘Input: None

‘Output: None

'References. None

Private Sub chtTheGraph_L ostFocus()
Me.lbITips.Caption = "Select apoint to seeitsvalue.”
End Sub

:Functi on/Sub Name: cmdClose_Click()
'Description: Closes theform.

:Input: None

'‘Output: None

'References. None

Private Sub cmdClose_Click()
On Error GoTo Err_cmdClose_Click

DoCmd.Close

Exit_cmdClose_Click:
Exit Sub

Err_cmdClose_Click:
MsgBox ERR.D ecription
Resume Exit_cmdClose Click

End Sub

'Function/Sub Name: cmdUpdate_Click()

'Description: Rebuilds the M SChart20 control's Datagrid
based upon

'IstShowTheseX _AfterUpdate() and
IstShowTheseY_AfterUpdate() information

‘(which corresponds to the users selectionsin the X and Y
axis

'list box selection criteria).

'HINT: Uncomment the debug.print lines to troubl eshoot this
code.

'Input: None
‘Output: None

'References: None

Private Sub cmdUpdate_Click()
'MsgBox strValuelist

'Go to the beginning of the recordset.
rst.MoveFirst

Me.chtTheGraph.DataGrid.RowCount =
Me.lstShowTheseX.ItemsSel ected.Count
'‘Debug.Print "RowCowunt =" &
Me.lstShowTheseX.ItemsSel ected.Count
Me.chtTheGraph.DataGrid.RowL abel Count =
Me.lstShowTheseX.ItemsSel ected.Count + 1

238

'‘Debug.Print "RowLabelCount =" &
Me.lstShowTheseX.ItemsSel ected.Count + 1
Me.chtTheGraph.DataGrid.ColumnCount =
MelstShowTheseY .ItemsSelected.Count
‘Debug.Print "ColumnCount =" &
MelstShowTheseY .ItemsSelected.Count
Me.chtTheGraph.DataGrid.ColumnL abel Count =
MelstShowTheseY .ItemsSelected.Count
'‘Debug.Print "ColumnLabelCount =" &
Me.lstShowTheseY .ItemsSel ected.Count

Dim row As Integer
Dim col AsInteger
DimiX AsInteger
DimiY AslInteger

'Set column labels
rst.MoveFirst
ForiY = LBound(aryltemsSelectedY) To
UBound(aryltemsSelectedY) - 1
'‘Debug.Print
Me.chtTheGraph.DataGrid.ColumnLabel(iY +1, 1) & " ="
& rst.Fieds(aryltemsSelectedY (iY)).Name
Me.chtTheGraph.DataGrid.ColumnLabel(iY + 1, 1) =
rst.Fields(aryltemsSelectedY (iY)).Name
Next 'of aryltemsSelectedY ()

'Set row |abels.
For iX = LBound(aryltemsSelectedX) To
UBound(aryltemsSelectedX) - 1
rst.Moverirst
For row = 0 To (rst.RecordCount- 1)
If aryltemsSelectedX (iX) = row Then
Me.chtTheGraph.DataGrid.RowLabel (iX + 1, 1) =
rst.Fields(0)
'Debug.Print "Row: " & iX +1& " Labd: " &
rst.Fields(0)
End If
rst.MoveNext
Next

'Load the data.
rs.MoveFirst
Dim nullflag As Boolean
‘Loop through all X values
For row = 0 To (rst.RecordCount- 1)
If aryltemsSelectedX (iX) = row Then
For iY = LBound(aryltemsSelectedY) To
UBound(aryltemsSelectedY) - 1
'‘Debug.Print"Row: " & iX +1& ", Col: " &
iY+1&"Vaue " & rst.Fidds(aryltemsSelectedY (iY))
If IsNull(rst.Fields(aryltemsSelectedY (iY)))
Then nullflag = True
Me.chtTheGraph.DataGrid.SetDataiX + 1,iY
+ 1, rst.Fields(aryltemsSelectedY (iY)), nullflag
nullflag = False
Next
End If
rst.MoveNext
Next
Next 'of aryltemsSelectedX ()

End Sub

'Function/Sub Name: Form_Clos()

'Description: Closes the form.
‘Input: None
‘Output: None

'References. None

Private Sub Form_Close()

Application.CommandBars("mnuCther").Visible = True

Application.CommandBars("mnuPrintGraph").Visible =
False

'‘Clean up

rst.Close

Set oCmd = Nothing

cnn.Close

End Sub

:Function/Sub Name: Form_Activate()
:Descri ption: Update the menu bar.
:Input: None

:Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars("mnuPrintGraph").Visible =

True

End Sub

:Functi on/Sub Name: Form_Deactivate()
'Description: Updates the menu bar.
:Input: None

‘Output: None

'References. None

Private Sub Form_Deactivate()
Application.CommandBars("mnuPrintGraph").Visible =

False

End Sub

'Function/Sub Name: Form_L oad()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

'Output: None

239

'References:
- ezSizeForm

Private Sub Form_L oad()
'‘Dynamically resize the form based on screen resolution.
ezSizeForm Me, -1
MoveToCenter "4-0-1-2-frm-TheActua Graph"

End Sub

'Function/Sub Name: Form_Open

'Description: Builds the MSChart20 control's Datagrid based
upon

'the results of a RAC stored procedure (4-0-1-0-
flanCrossTabForGraphing).

'Also, sets up visual aspects of the graph and populates the X
and

'Y multi-select listboxes with values.

'HINT: Uncomment the debug.print lines to troubleshoot this
code.

'Input: None
'Output: None

'References. None

Private Sub Form_Open(Cancel As Integer)

'‘Update menu bars.

Application.CommandBars("mnuCther").Visible = False

Application.CommandBars("mnuPrintGraph").Visible =
True

'Set default button values.
Me.togEnlarge.Vadue=0
Me.chkStack.Vaue = False
Me.chkTranspose.Vaue = Fase

'Run a stored procedure to get the graph data
Dim objPrmCaolleft As ADODB.Parameter
Dim objPrmColtop As ADODB.Parameter

Set cnn = CurrentProject.Connection

cnn.CursorLocation = adUseClient

Set rst = New ADODB.Recordset

Set oCmd = New ADODB.Command

oCmd.ActiveConnection = cnn

oCmd.CommandText ="""4-0-1-0-
flanCrossTabForGraphing"""

oCmd.CommandType = adCmdStoredProc

'Create parameters for the SP.

‘They have to be appended in the same order that they
gppear in

'the stored procedure.

Set objPrmColleft = oCmd.CreateParameter (" @col eft”,
adVarChar, adParaminput, 500)
oCmd.Parameters.Append objPrmColleft
objPrmCaolleft.Vaue =
Global Declarations.gStrX FieldToGraph

Set objPrmColtop = oCmd.CreateParameter (" @coltop",
adVarChar, adParaminput, 500)
oCmd.Parameters.Append objPrmColtop
objPrmColtop.Vaue =
Global Declarations.gStrY FieldToGraph

'Run the SP
Set rst = oCmd.Execute

‘Build the data grid for the chart . . . thisis how MSChart
objects

‘get input.

Dim row As Integer

Dim col AsInteger

Me.chtTheGraph.DataGrid.RowCount = rst.RecordCount
‘Debug.Print "RowCount =" & rst.RecordCount
Me.chtTheGraph.DataGrid.RowL abel Count =
rst.RecordCount + 1
'Debug.Print "RowLabelCount =" & rst.RecordCount +
1
Me.chtTheGraph.DataGrid.ColumnCount =
rst.Fields.Count - 1
'Debug.Print "ColumnCount =" & rst.Fields.Count- 1
Me.chtTheGraph.DataGrid.ColumnL abel Count =
rst.Fields.Count - 1
'‘Debug.Print "ColumnLabelCount =" &
rst.Fields.Count - 1

‘Debug.Print

'Set row labels

'First declare atemporary string to create values for the list

box.
Dim tempvaluelistX As String
Dim tempvaluelistY As String
tempvaudistX =""
tempvaudigtY =""

rst.MoveFirst
For row = 0 To (rst.RecordCount - 1)
Me.chtTheGraph.DataGrid.RowLabel (row + 1, 1) =
Trim(rst.Fields(0))
'‘Debug.Print "Row: " & row +1& " Label: " &
rst.Fields(0)
'Add the |abel to the list box.

'Replace commas and semicolons with dashes
becuase the mess up

thelist

Dim astrText As String

DimiCount AsInteger

astrText = Trim(rst.Fields(0))

'Loop through array, replacing commas and
semicolons
For iCount = 1 To Len(astrText)

If Mid(astrText, iCount, 1) ="," Or
Mid(astrText, iCount, 1) =";" Then
'If array element satisfies wildcard search,
'replaceit.
Mid(astrText, iCount, 1) ="-"
End If
Next

‘Join string.

240

tempvaluelistX = tempvaudistX & row & ";" &

astrText& ;"

'‘Debug.Print "Col1" & row; " Col2: " & rst.Fields(0)
rs.MoveNext
Next

'Populate the Select X list box
MelstShowTheseX.ColumnCount = 2
Me.lstShowTheseX.ColumnWidths = "0;1"
MelstShowTheseX.RowSourceType = "Vaue List"
Me.lstShowTheseX .RowSource = tempva uelistX

'Select al the values

ReDim aryltemsSelectedX (MelstShowTheseX .ListCount)
DimiListltemindex As Integer

For iListltemindex = 0 To MelstShowTheseX.ListCount -

MelstShowTheseX.Selected(iListltemindex) = True
aryltemsSelectedX (iListitemIndex) = iListltemlndex
Next

'Set column labels

'First column is aready done.

'Other columns.

rst.MoveFirst

Dimj As Integer

ji=1

For col =0 To (rst.Fields.Count - 2)
Me.chtTheGraph.DataGrid.ColumnLabel(j, 1) =

Trim(rst.Fields(col + 1).Name)

'Debug.Print "Col: " & col +1& " Labd:" &

ret.Fields((col + 1)).Name

'‘Add the label to thelist box.

'Replace commas and semicolons with dashes

becuase the mess up

thelist
‘Check for null fields and only operate on those that

arenot null

astrText = Trim(rst.Fields(col + 1).Name)

' Loop through array, replacing commas and

semicolons

For iCount = 1 To Len(astrText)

If Mid(astrText, iCount, 1) =" " Or
Mid(astrText, iCount, 1) =";" Then
'If array element satisfies wildcard search,

'replaceit.
Mid(astrText, iCount, 1) ="-"
End If
Next
" Join string.
tempvaludistY =tempvaludistyY & j & ";" &
astrText& "'
'Debug.Print"Col1" & j & " Col2: " & rst.Fields(col +
1).Name
j=j+1
Next

'Populate the Select Y list box

Me.lstShowTheseY .ColumnCount = 2
Me.lstShowTheseY .ColumnWidths = "0;1"
MelstShowTheseY .RowSourceType = "Value List"
Me.lstShowTheseY .RowSource = tempva uelistY

'Select al the vaues

ReDim aryltemsSelectedY (MelstShowTheseY .ListCount)

For iListltemindex = 0 To MelstShowTheseY .ListCount -
1
MelstShowTheseY .Sdlected(iListItemindex) = True
aryltemsSelectedY (iListltemindex) = iListItemindex +
1
Next

‘Load the data.
rst.MoveFirst
Dim nullflag As Boolean
For row = 0 To (rst.RecordCount - 1)
For col =0 To (rst.Fields.Count - 2)
'‘Debug.Print"Row: " & row+1& ", Col: " & col +1
& "Vadue " & rst.Fields(cal + 1)
If IsNull(rst.Fields(col + 1)) Then nullflag = True
Me.chtTheGraph.DataGrid.SetDatarow + 1, col + 1,
rst.Fields(col + 1), nullflag
nullflag = Fase
Next
rst.MoveNext
Next

‘Leave for future use.
" Use manual scaleto display y axis (vaue axis)
'With
Me.chtTheGraph.Plot. Axi(VtChAXxisldY).VaueScae
' .Auto=Fase
Minimum=0
' Maximum = Int(maxvaue * 1.1)
'End With

" Use manual scaleto display x axis
'With
Me.chtTheGraph.Plot. Axis(VtChAxisldX).VaueScae
Auto = False
" Minimum=0
Maximum =
Me.chtTheGraph.DataGrid.RowL abel Count
'End With

'Set Font size for X Axis

Dim currentaxis As MSChart20Lib.Axis

Dim currentlabel As MSChart20Lib.Label

' Get areferenceto the x axis

Set currentaxis =

Me.chtTheGraph.Plot. Axis(VtChAXxisldX)

' Loop though and set the font of each label

For Each currentlabel In currentaxis.Labels
currentlabel .VtFont.Name = "small fonts'
currentlabel.VtFont.Size= 7

Next currentlabel

'set up the legend

With Me.chtTheGraph
.Legend.Location.Locat ionType=

VtChL ocationTypeTop

.Legend.VtFont.Style = VtFontStyleBold
.Legend.Location.RECT.Max.Set 7560, 5132
.Legend.Location.RECT.Min.Set 3004, 4864

End With

End Sub

'Function/Sub Name: fraChart_AfterUpdate()

241

'Description: Setsthe ChartType option of the M SChart
control

'in response to aradio button selection. It hasto check
'the value of fraDimensionsto do this, so it knows if the
‘chart should be 2d or 3d.

‘Input : None
‘Output: None

'References. fraDimensions.vaue

Private Sub fraChart_AfterUpdate()

Sdlect Case MefraChart.Vaue
Casel
If MefraDimensions.Vaue=1 Then
Me.chtTheGraph.chartType =
VtChChartType2dBar
Else
Me.chtTheGraph.chartType =
VtChChartType3dBar
End If
Case2
If MefraDimensions.Value= 1 Then
Me.chtTheGraph.chartType =
VtChChart Type2dLine
Else
Me.chtTheGraph.chartType =
VtChChartType3dLine
End If
Cae3
If MefraDimensions.Value= 1 Then
Me.chtTheGraph.chartType =
VtChChartType2dArea
Else
Me.chtTheGraph.chartType =
VtChChartType3dArea
End If
Cae4
If MefraDimensions.Value= 1 Then
Me.chtTheGraph.chartType =
VtChChartType2dStep
Else
Me.chtTheGraph.chart Type =
VtChChartType3dStep
End If
End Select

End Sub

'Function/Sub Name: fraDimensions_AfterUpdate()

'Description: Sets the ChartType option with respect to
number

'of dimensions (2d or 39 of the MSChart control

'in response to aradio button selection. It hasto check

'the value of fraChartType to do this, so it knows what style
‘chart to create.

'Input: None
'Output: None

'References. fraChart.Vdue

Private Sub fraDimensions_AfterUpdate()

If MefraDimensions.Value=1 Then
Sdlect Case MefraChart.Vaue
Cael
Me.chtTheGraph.chartType =
VtChChartType2dBar
Case2
Me.chtTheGraph.chartType =
VtChChartType2dLine
Cae3
Me.chtTheGraph.chartType =
VtChChartType2dArea
Case 4
Me.chtTheGraph.chartType =
VtChChartType2dStep
End Sdlect
Else
Sdlect Case MefraChart.Vaue
Cael
Me.chtTheGraph.chartType =
VtChChartType3dBar
Case2
Me.chtTheGraph.chartType =
VtChChartType3dLine
Cae3
Me.chtTheGraph.chartType =
VtChChartType3dArea
Case 4
Me.chtTheGraph.chartType =
VtChChartType3dStep
End Sdlect
MellblTips.Caption = "Hold down the Ctrl key and
mouse down to rotate the chart.”
End If

End Sub

'Function/Sub Name: IstShowTheseX _AfterUpdate()

'‘Description: Builds the array used by cmdUpdate_Click() to
update

'the datagrid rows (X Axis) based on the users X -axis
selections.

‘Input: None
‘Output: None

'References. None

Private Sub IstShowTheseX_AfterUpdate()

Dim st AsListBox

Dim varltem As Variant
Dim intindex As Integer
Dim intCount As Integer
Dim intRow As Integer
Dim intRows As Integer
Dim intColumn As Integer
Dim intColumns As Integer

Set It = MelstShowTheseX

242

'Check that at least one value has been selected

If Ist.ItemsSelected.Count = 0 Then
MsgBox "Please select at least one X value"
MelblTips.Caption ="Y ou must select at least one X -

Axisand one Y-Axisvdue."

Ist.SetFocus
Me.cmdUpdate.Enabled = Fa se 'disable update button.
Exit Sub

End If

'Since an item was selected from the list box, enable the
update button
If MelstShowTheseY .ItemsSelected.Count >= 1 Then
Me.lbl Tips.Caption = "Select a point to seeitsvalue."
Me.cmdUpdate. Enabled = True
Else
MelblTips.Caption ="Y ou must select at least one Y -
Axisvalue, too."
End If

'Get the count of selected items and redim the array to hold
them

intColumns = Ist.ColumnCount

intRows = Ist.ItemsSel ected.Count

ReDim aryltemsSel ectedX (intRows)

‘Add the index of the value selected in the box to the array.
This
‘index corresponds to the index of the valuein the
recordset that
‘was queried when the form opened. Thiswill be used
when the user
‘clicks the Update button to select just those records.
Dimi As Integer
i=0
For Each varltem In Ist.ItemsSel ected
aryltemsSelectedX (i) = Nz(Ist.Column(0, varltem))
‘Debug.Print "Added to Array: " & aryltemsSelectedX (i)
=i+l
Next varltem

"This code prints the output to the debug window.
Uncomment to

'help debug.

'Debug.Print " -------------"

'Dim s As String

gz

'For i = LBound(aryltemsSelectedX) To
UBound(aryltemsSelectedX) - 1

' s=s& aryltemsSeectedX (i) & ", "

‘Next

'‘Debug.Print s

End Sub
Private Sub IstShowTheseX_L ostFocus()

Me.lblTips.Caption = "Select a point to seeitsvalue."
End Sub

'Function/Sub Name: IstShowTheseY _AfterUpdate()

'‘Description: Builds the array used by cmdUpdate_Click() to
update

'the datagrid columns (Y Axis) based on the users Y-axis
selections.

'Input: None
'‘Output: None

'References. None

Private Sub IstShowTheseY _AfterUpdate()

Dim Ist As ListBox
Dim varltem As Variant
Dim intIindex As Integer
Dim intCount As Integer
Dim intRow As Integer
Dim intRows As Integer
Dim intColumn As Integer
Dim intColumns As Integer

Set It = MelstShowTheseY

'Check that at least one value has been selected

If Ist.ItemsSelected.Count = 0 Then
MsgBox "Please select at least one Y value"
Me.lblTips.Caption ="Y ou must select at least one X -

Axisand one Y-Axisvaue."

Ist.SetFocus
Me.cmdUpdate.Enabled = Fal se 'disable update button.
Exit Sub

End If

'Since an item was selected from the list box, enable the
update button
If Me.lstShowTheseX .ItemsSelected.Count >= 1 Then
Me.lblTips.Caption = "Select a point to seeits value."
Me.cmdUpdate.Enabled = True
Else
Me.lblTips.Caption ="Y ou must select at least one X -
Axisvalue, too."
End If

'Get the count of selected items and redim the array to hold
them

intColumns = Ist.ColumnCount

intRows = |st.ItemsSel ected.Count

ReDim aryltemsSelectedY (intRows)

'Add the index of the value selected in the box to the array.
This
'index corresponds to the index of the valuein the
recordset that
‘was queried when the form opened. Thiswill be used
when the user
‘clicks the Update button to select just those records.
Dimi As Integer
i=0
For Each varltem In |st.IltemsSel ected
aryltemsSelectedY (i) = Nz(Ist.Column(0, varltem))
'Debug.Print "Added to Array: " & aryltemsSelectedY (i)
i=i+1l
Next varltem

"This code prints the output to the debug window.
Uncomment to

'help debug.

'Debug.Print * -------------"

243

'‘Dim s As String

g=

'For i = LBound(aryltemsSelectedY) To
UBound(aryltemsSelectedY) - 1

' s=s& aryltemsSelectedY (i) & ", "

'Next

‘Debug.Print s

End Sub

:Function/Sub Name: IstShowTheseY _L ostFocus()
'‘Description: Updates the "Tips' label with information for
e,

:Input: None

'Output: None

'References. None

Private Sub |stShowTheseY _L ostFocus()
Me.lbITips.Caption = "Select apoint to seeitsvalue."
End Sub

'Function/Sub Name: Option13_L ostFocus()

'‘Description: Updates the "Tips' label with information for
the

user.
'Input: None
'Output: None

'References. None

Private Sub Option13_L ostFocus()
Me.lblTips.Caption = "Selecta point to seeitsvalue."
End Sub

'Function/Sub Name: togEnlarge_AfterUpdate()
'‘Description: Enlarges or shrinks the form using the
ezSizeForm

'class.

'Input: None

'Output: None

'References. ezSizeForm

Private Sub togEnlarge_AfterUpdate()

'‘Make it big
If MetogEnlarge.Vaue =-1Then
ezSizeForm Me, 1.37

Me.ScrollBars= 3
DoCmd.Maximize

‘Make it small

Else
DoCmd.Restore
Me.ScrollBars=0
ezSizeForm Me, 0.73
Me.Repaint

End If

End Sub

'Function/Sub Name: chtTheGraph_PointSelected

'‘Description: Updates the "Tips" label with information
specified

‘when the user clicks on a datapoint in the M SChart20 object.

'Input: Automatically generated by a mouse click.
‘Output: None

'References. None

Private Sub chtTheGraph_PointSelected(Series As Integer, _

DataPoint As Integer, MouseFlags As Integer, Cancel As
Integer)

‘This allows the user to see the value of any particular data
pointina

'series by sdlecting it. The value of the data point is shown
in the label

‘named 1bl Tips.

If Me.chkTranspose.Vaue = False Then
Me.chtTheGraph.Column = Series
Me.chtTheGraph.row = DataPoint
Me.lblTips.Caption = "Vaue of Series" & Chr(34) &

Me.chtTheGraph.DataGrid.ColumnLabel (Series, 1) &
Chr(34) & ", point" & Chr(34) &
Me.chtTheGraph.DataGrid.RowL abel (DataPoint, 1) &
Chr(34) & " =" & Me.chtTheGraph.Data

Else

244

Me.chtTheGraph.Column = DataPoint

Me.chtTheGraph.row = Series

Me.lblTips.Caption = "Value of Series" & Chr(34) &
Me.chtTheGraph.DataGrid.RowL abel (Series, 1) & Chr(34)
& ", point" & Chr(34) &
Me.chtTheGraph.DataGrid.ColumnLabel (DataPoint, 1) &
Chr(34) & " =" & Me.chtTheGraph.Data

End If

End Sub

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can bemade on aform by
form

'basis.

'Input: None
'Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORM CLASS-7-0-0-1-PopUpFrm-waitProgressBar

Option Compare Daabase
Option Explicit

' FORM DESCRIPTION

'Class Name: 7-0-0-1-PopUpFrm-waitProgressBar
'Author: Pat Flanders & Scott Tufts
T his class shows a pop-up form with spinning globe while

data
'for other formsis being loaded.

'References:
' - clFormWindow
- ez_SizingFunctions
' - ConnectionFunctions

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

FUNCTIONS

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

'Function/Sub Name: Form_Load()

'Description: Dynamically resizestheform to the users
screen

'resolution and then centersit.

‘Input: None

‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCanter "7-0-0-1-PopUpFrm-waitProgressBar"
End Sub

'Function/Sub Name: Form_Clos()

245

'Description: Ensures the mouspointer gets set back to
normal.

‘Input: None
‘Output: None

'References. None

Private Sub Form_Close()
Screen.MousePointer = 0
End Sub

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Accesss built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

‘Input: None
‘Output: None

'References:
' - clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-8-0-0-1-frm-Reports

Option Compare Database
Option Explicit

FORM DESCRIPTION

'ClassName: 8-0-0-1-frm-Reports
'‘Author: Pat Flanders & Scott Tufts

"This classistheform for selecting the type of report to run.

'References:

- clFormWindow

- ez_SizingFunctions
- Globa Declarations
' - All reports

Tkkkkkhkhkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkkkkk

' FUNCTIONS

Tkkkkhkkkhhhhhkhhhhhhhhkhhhhhhhkkhhhhhhkkhhhhkkkkkk

:Functi on/Sub Name: cmdCloseReportMenu_Click()
:Description: Closestheform.

:Input: None

:Output: None

'References. None

Private Sub cmdCloseReportMenu_Click()
DoCmd.Close acForm, "8-0-0-1-frm-Reports'
End Sub

'Function/Sub Name:
' - cmdAll_Click()
' - cmdAircraft_Click()
' - cmdClass_Click()
' - cmdLocation_Click()
' - ecmdOrganization_Click()
- cmdType_Click()
' - cmdY ear_Click()
' - cmdChron_Click()
' - cmdCloseReportMenu_Click()

'‘Description: The following 9 functions launch their
respective

'reports in response to command button click events.
'Input: None

‘Output: None

246

'References. None

Private Sub cmdAircraft_Click()

On Error GoTo startError

MeVisble = Fase

ConnectionFunctionswaitScreen "2-2-Digtribution-
Aircraft"

'DoCmd.OpenReport "2-2-Distribution-Aircraft”,
acViewPreview
exitSub:

Exit Sub
startError:

MsgBox "Y ou must have a default printer installed in
order to preview reports.”, vbCritical + vbOKOnly, "Can't
Find A Printer"

End Sub

Private Sub cmdAll_Click()

On Error GoTo startError

MeVisble = Fase

ConnectionFunctions.waitScreen "2-1-Distribution-
AllMishaps'

'DoCmd.OpenReport "2-1-Distribution-AlIMishaps’,
acViewPreview
exitSub:

Exit Sub
startError:

MsgBox "Y ou must have adefault printer installed in
order to preview reports.”, vbCritical + vbOKOnly, "Can't
Find A Printer"

End Sub
Private Sub cmdClass_Click()

On Error GoTo startError

MeVisble = Fase

ConnectionFunctionswaitScreen "2-4-Distribution-Class'

'‘DoCmd.OpenReport "2-4-Distribution-Class’,
acViewPreview
exitSub:

Exit Sub
startError:

MsgBox "Y ou must have adefault printer installed in
order to preview reports.”, vbCritical + vbOKOnly, "Can't
Find A Printer"

End Sub
Private Sub cmdLocation_Click()

On Error GoTo startError

MeVisble = Fase

ConnectionFunctionswaitScreen "2-3-Distribution-
Location"

'‘DoCmd.OpenReport "2-3-Distribution-L ocation",
acViewPreview
exitSub:

Exit Sub
startError:

MsgBox "Y ou must have adefault printer installed in
order to preview reports.”, vbCritical + vbOKOnly, "Can't
Find A Printer"

End Sub
Private Sub cmdOrganization_Click()

On Error GoTo startError

MeVisible = Fase

ConnectionFunctionswaitScreen "2-5-Distribution-
Organization”

'DoCmd.OpenReport "2-5-Distribution-Organization", '

acViewPreview '‘Output: None
exitSub: '
Exit Sub 'References: None
startError: '
MsgBox "Y ou must have adefault printer installed in
order to preview reports.”, vbCritical + vbOKOnly, "Can't Private Sub cmdAll_MouseMove(Button As Integer, Shift As
Find A Printer" Integer, X AsSingle, Y AsSingle)
End Sub ' Make the button text blue when it gets the focus
Private Sub cmdY ear_Click() Me.cmdAll.ForeColor = QBColor(9)
On Error GoTo startError Me.cmdAircraft.ForeColor = QBColor(0)
MeVisble = Fase Me.cmdClass.ForeColor = QBColor(0)
ConnectionFunctions.waitScreen "2-7-Distribution- Year" Me.cmdL ocation.ForeColor = QBColor(0)
'DoCmd.OpenReport "2-7-Distribution-Y ear", Me.cmdOrganization.ForeColor = QBColor(0)
acViewPreview Me.cmdType.ForeColor = QBColor(0)
exitSub: Me.cmdChron.ForeColor = QBColor(0)
Exit Sub Me.cmdCloseReportM enu.ForeColor = QBColor(0)
startError: Me.cmdY ear.ForeColor = QBColor(0)
MsgBox "Y ou must have adefault printer installed in End Sub
order to preview reports.”, vbCritical + vbOKOnly, "Can't
Find A Printer" Private Sub cmdAircraft_MouseMove(Button As Integer,
End Sub Shift As Integer, X AsSingle, Y As Single)
Private Sub cmdType_Click() ' Make the button text blue when it gets the focus
On Error GoTo startError Me.cmdAll.ForeColor = QBColor(0)
MeVisble = Fase Me.cmdAircraft.ForeColor = QBColor(9)
ConnectionFunctions.waitScreen "2-6-Distribution-Type" Me.cmdClass.ForeColor = QBColor(0)
'DoCmd.OpenReport "2-6-DistributionType", Me.cmdL ocation.ForeColor = QBColor(0)
acViewPreview Me.cmdOrganization.ForeColor = QBColor(0)
exitSub: Me.cmdType.ForeColor = QBColor(0)
Exit Sub Me.cmdChron.ForeColor = QBColor(0)
startError: Me.cmdCloseReportM enu.ForeColor = QBColor(0)
MsgBox "Y ou must have adefault printer instaled in Me.cmdY ear.ForeColor = QBColor(0)
order to preview reports.”, vbCritical + vbOKOnly, "Can't End Sub
Find A Printer" Private Sub cmdClass_ MouseMove(Button As Integer, Shift
End Sub As Integer, X AsSingle, Y As Single)
Private Sub cmdChron_Click() ' Make the button text blue when it gets the focus
On Error GoTo startError Me.cmdAll.ForeColor = QBColor(0)
MeVisble = Fase Me.cmdAircraft.ForeColor = QBColor(0)
ConnectionFunctionswaitScreen "3-0-Chronologica- Me.cmdClass.ForeColor = QBColor(9)
AllMishaps’ Me.cmdL ocation.ForeColor = QBColor(0)
'DoCmd.OpenReport " 3-0-Chronol ogical-AlIMishaps”, Me.cmdOrganization.ForeColor = QBColor(0)
acViewPreview Me.cmdType.ForeColor = QBColor(0)
exitSub: Me.cmdChron.ForeColor = QBColor(0)
Exit Sub Me.cmdCloseReportM enu.ForeColor = QBColor(0)
startError: Me.cmdY ear.ForeColor = QBColor(0)
MsgBox "Y ou must have a default printer installed in End Sub
order to preview reports.”, vbCritical + vbOKOnly, "Can't Private Sub cmdL ocation_MouseMove(Button As Integer,
Find A Printer" Shift AsInteger, X AsSingle, Y As Single)
End Sub ' Make the button text blue when it gets the focus

Me.cmdAll.ForeColor = QBColor(0)
Me.cmdAircraft.ForeColor = QBColor(0)
k Me.cmdClass.ForeColor = QBColor(0)
'Function/Sub Name: Me.cmdL ocation.ForeColor = QBColor(9)

- cmdAll_MouseMove() Me.cmdOrgani zation.ForeColor = QBColor(0)
' - emdAircraft_ MouseMove() Me.cmdType.ForeColor = QBColor(0)
' - cmdClass_MouseMove() Me.cmdChron.ForeColor = QBColor(0)
' - cmdLocation_MouseMove() Me.cmdCloseReportM enu.ForeColor = QBColor(0)
' - cmdOrganization MouseMove() Me.cmdY ear.ForeColor = QBColor(0)
' - cmdType_MouseMove() End Sub
' - cmdYear_MouseMove() Private Sub cmdOrganization_MouseMove(Button As
' - cmdChron_MouseMove() Integer, Shift AsInteger, X AsSingle, Y As Single)
' - cmdCloseReportMenu_MouseMove() ' Make the button text blue when it gets the focus
' Me.cmdAll.ForeColor = QBColor(0)
'‘Description: The following 9 functions update text color on Me.cmdAircraft.ForeColor = QBColor(0)
the Me.cmdClass.ForeColor = QBColor(0)
‘command buttons in response to mouse over events. Me.cmdL ocation.ForeColor = QBColor(0)
' Me.cmdOrganization.ForeColor = QBColor(9)
'Input: None Me.cmdType.ForeColor = QBColor(0)

247

Me.cmdY ear.ForeColor = QBColor(0) '
Me.cmdChron.ForeColor = QBColor(0) !

Me.cmdCloseReportM enu.ForeColor = QBColor(0) Private Sub Form_Close()
End Sub
Private Sub cmdType_MouseMove(Button As Integer, Shift Application.CommandBars("mnuOther").Visible = False
AsInteger, X AsSingle, Y As Single) Application.CommandBars("mnuProgramMain”).Visible =
' Make the button text blue when it gets the focus True
Me.cmdAll.ForeColor = QBColor(0) Formsl[MainMenu].Visible = True
Me.cmdAircraft.ForeColor = QBColor(0)
Me.cmdClass.ForeColor = QBColor(0) End Sub

Me.cmdL ocation.ForeColor = QBColor(0)
Me.cmdOrganization.ForeColor = QBColor(0)
Me.cmdType.ForeColor = QBColor(9) !

Me.cmdChron.ForeColor = QBColor(0) 'Function/Sub Name: Form_Activate()

Me.cmdCloseReportM enu.ForeColor = QBColor(0)
Me.cmdY ear.ForeColor = QBColor(0) 'Description: Update the menu bar.
End Sub '
Private Sub cmdChron_MouseMove(Button As Integer, Shift 'Input: None
AsInteger, X AsSingle, Y As Single) '
' Make the button text blue when it gets the focus 'Output: None
Me.cmdAll.ForeColor = QBColor(0) '
Me.cmdAircraft.ForeColor = QBColor(0) 'References: None

Me.cmdClass.ForeColor = QBColor(0)
Me.cmdL ocation.ForeColor = QBColor(0) k
Me.cmdOrganization.ForeColor = QBColor(0) Private Sub Form_Activate()

Me.cmdType.ForeColor = QBColor(0) Application.CommandBars("mnuCther").Visible = True
Me.cmdChron.ForeColor = QBColor(9) End Sub

Me.cmdCloseReportM enu.ForeColor = QBColor(0)
Me.cmdY ear.ForeColor = QBColor(0)

End Sub '
Private Sub cmdCloseReportMenu_MouseMove(Button As 'Function/Sub Name: Form_Deactivate()
Integer, Shift AsInteger, X AsSingle, Y As Single) '
' Make the button text blue when it gets the focus 'Description: Updates the menu bar.
Me.cmdAll.ForeColor = QBColor(0) '
Me.cmdAircraft.ForeColor = QBColor(0) 'Input: None
Me.cmdClass.ForeColor = QBColor(0) '
Me.cmdL ocation.ForeColor = QBColor(0) 'Output: None
Me.cmdOrganization.ForeColor = QBColor(0) '
Me.cmdType.ForeColor = QBColor(0) 'References: None

Me.cmdChron.ForeColor = QBColor(0)
Me.cmdCloseReportM enu.ForeColor = QBColor(9) !
Me.cmdY ear.ForeColor = QBColor(0) Private Sub Form_Deactivate()

End Sub Application.CommandBars("mnuOther).Visible = False
Private Sub cmdY ear_MouseMove(Button As Integer, Shift End Sub

AsInteger, X AsSingle, Y As Single)
' Make the button text blue when it gets the focus
Me.cmdAll.ForeColor = QBColor(0) !
Me.cmdAircraft.ForeColor = QBColor(0) 'Function/Sub Name: Form_L oad()

Me.cmdClass.ForeColor = QBColor(0)
Me.cmdL ocation.ForeColor = QBColor(0) 'Description: Dynamically resizestheform to the users
Me.cmdOrganization.ForeColor = QBColor(0) screen
Me.cmdType.ForeColor = QBColor(0) 'resolution and then centersit.
Me.cmdY ear.ForeColor = QBColor(9) '
Me.cmdChron.ForeColor = QBColor(0) 'Input: None
Me.cmdCloseReportM enu.ForeColor = QBColor(0) '
End Sub ‘Output: None
'References:

' - ezSizeForm
'Function/Sub Name: Form_Close() '

'Description: Closes the form. Private Sub Form_L oad()

'Input: None ezSizeForm Me, -1

' MoveToCenter "8-0-0-1-frm-Reports'
'Output: None
' End Sub
'References. None

248

:Functi on/Sub Name: Form_Open

'I_Z)&ecripti on: Updates the menu bar and sets the focusto the
:fg)iwma‘\d button, setting its color to blue.

'Input: None

:Output: None

'References. None

Private Sub Form_Open(Cancel As Integer)

Formsl[MainMenu].Visible = False
Application.CommandBars("mnuCther").Visible = True

Me.cmdCloseReportM enu. SetFocus

'‘Make the button text blue when it gets the focus
Me.cmdAll. ForeColor = QBColor(0)
Me.cmdAircraft.ForeColor = QBColor(0)
Me.cmdClass.ForeColor = QBColor(0)

Me.cmdL ocation.ForeColor = QBColor(0)
Me.cmdOrganization.ForeColor = QBColor(0)
Me.cmdType.ForeColor = QBColor(0)
Me.cmdChron.ForeColor = QBColor(0)
Me.cmdCloseReportM enu.ForeColor = QBColor(0)
Me.cmdY ear.ForeColor = QBColor(0)

End Sub

249

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, o this
'method is needed to fix it. Each form getsits own version of
this

‘function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
'Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVad strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-MainMenu

Option Compare Database
Option Explicit

FORM DESCRIPTION

'ClassName: MainMenu
'Author: Pat Flanders & Scott Tufts

'Description: Thisclassisthe main switchboard for the
program.

"It isresponsible for launching all other processes, connecting
'to the SQL server, vaidating Administrator settings, and
determining

'O/S platform.

'References:

- Connection functions
- clFormWindow

- ez_SizingFunctions

' - GlobaDeclarations

- Numerous forms

Tkkkkkhkkkkhkkkhkhkkhkkhkhkhkhkhhkhhkhkhhkhhhkhhhhhhkhhhkhhhkhhhkhhhhixkx

' FUNCTIONS

Ykkkkkkkkhkkkkhkkkkhkkkkhkkhkkkhkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkkkhkkkhkkkxkx

:Function/Sub Name: Form_Activate()
:Descri ption: Update the menu bar.
‘Input: None

:Output: None

'References. None

Private Sub Form_Activate()
Application.CommandBars(*mnuProgramMain”).Visible =

True

End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

'‘Output: None

'References:
- ezSizeForm

Private Sub Form_L oad()
Screen.MousePointer = 11
DoEvents

'Set the picture for military or civilian.

If ez_SizingFunctions.ezGetScreenRes = "640x480" Or _
ez_SizingFunctions.ezGetScreenRes = "800x600" Or _
ez_SizingFunctions.ezGetScreenRes = "1024x768"

Then

If Globa Declarations.gStrTypeDB ="M" Then
MeimgCivilian.Visible = False
MeimgMilitary.Visible= True

Elself GlobalDeclarations.gStrTypeDB ="C" Then
MeimgMilitary.Visible = False
Me.imgCivilian.Visble = True

End If

Else
'‘Dynamically resize the form based on screen resolution.
ezSizeForm Me, -1
MoveToCenter "ManMenu"

If Globa Declarations.gStrTypeDB ="M" Then
Me.imgCivilian.Visible = False
MeimgMilitary.Visible = True

Elself Globa Declarations.gStrTypeDB = "C" Then
Me.imgMilitary.Visible = False
Me.imgCivilian.Visible = True

End If

End If

Screen.MousePointer = 0

End Sub

'Function/Sub Name: Form_Open()

'Description: Set initial screen colors, determine OS type, and
initiate

‘connection to the SQL Server.

'Input: None

‘Output: None

'References:
' - ezSizeForm

- DetermineOSDeclares
' - ConnectionFunctions

Private Sub Form_Open(Cancel As Integer)

'Check to seeif the user accidently opened a second
instance of HFACS
'by mistake.
If DetermineOSDeclares.|sRunning =-1Then
MsgBox "Y ou can only run oneinstance of HFACSME
a atime. Thisinstance will now close.", vbOKOnly +
vbExclamation, "HFACS Is Already Running"

250

Screen.MousePointer = 11
ConnectionFunctions.removeConnection
End If

Screen.MousePointer = 11

' Change menu color when mouse is over button
Me.lblQuery.BackColor = QBColor(9) ' Blue
Me.lblGraph.BackColor = QBColor(15) ' White
Me.lblReport.BackColor = QBColor(15) ' White
Me.IblAddEditMishaps.BackColor = QBColor(15) ' White
Me.lblInvestigate.BackColor = QBColor(15) ' White
Me.lblExit.BackColor = QBColor(15) ' White

Me.lblQuery.Specia Effect = 1 ' Raised
Me.lblGraph.Specia Effect = 0" Normal
Me.IblReport.Specia Effect = 0' Normal
MelblAddEditMishaps.Specia Effect = 0 ' Normal
Me.blInvestigate.Special Effect = 0' Normal
Me.lblExit.Special Effect = 0' Normal

Me.lblQuery.ForeColor = QBColor(15) ' White
Me.blGraph.ForeColor = QBColor(0) ' Black
Me.lblReport.ForeColor = QBColor(0) ' Black
Me.IblAddEditMishaps.ForeColor = QBColor(0) ' Black
Me.lblInvestigate.ForeColor = QBColor(0) ‘ Black
Me.lblExit.ForeColor = QBColor(0) ' Black

‘CreateConnection

ConnectionFunctions.InitConnection

Ibl ServerConnectedTo.Caption = " Connected To Server: "
& Global Declarations.gStrServerName

Ibl ServerConnectedTo.Visible = True

Screen.MousePointer = 0

End Sub

'Function/Sub Name: 1blAddEditMishaps Click()

'‘Description: Only Administrators can access the
administration

'functions and then, only for thelocal machine. Thisfunction
‘'ensures that the user isa Window O/S Administrator, a SQL
Server

'‘Adminigtrator, and an HFACS Administrator. If all these
testsare

'passed, then the the 1-0-0-0-frm-SelectMishap form is
opened.

‘Input: None

‘Output: None
'References:

' - Invesigatemdb

- 1-0-0-6-PopUpFrm-AdministatorL ogon
' - 1-0-0-0-frm-SelectMishap

Private Sub IblAddEditMishaps_Click()
On Error GoTo startError
hk am 1

'Check to make sure the user is logged onto the local SQL
server.

251

If GlobalDeclarations.gStrServerName = "(local)" Then

kK gep 2
‘Now check to seeif the user isa SQL Server sysadmin
by
'passing a parameter to a stored procedure.
Dim cnn As Connection
Dim oCmd As ADODB.Command
Dim rst As ADODB.Recordset
Set cnn = CurrentProject.Connection
cnn.CursorLocation = adUseClient
Set rst = New ADODB.Recordset
Set oCmd = New ADODB.Command
0oCmd.ActiveConnection = cnn
oCmd.CommandText = """1-0-0-4-
flanlsUserSysadmin"""
oCmd.CommandType = adCmdStoredProc
DoCmd.SetWarnings (False)
Set rst = oCmd.Execute
DoCmd.SetWarnings (True)
ret.MoveFirst

'Check for SQL SYSADMIN permissions
If rstllsUserOwner <> 1 Then
MsgBox "You must have SQL SERVER
SYSADMIN permissions to administer the HFACS
database.", vbOK Only + vbExclamation, "Insufficient
Permissions’
GoTo exitSub
End If

Yk &m 3
'Check to make sure that the user is a Windows System
Administrator
If Trim(oHFA CSConnection.getSQL ServerPath) ="
Then
MsgBox "Y ou must have Windows System
Administrator permissionsto Administer HFACS.",
vbOKOnly + vbExclamation, " Insufficient Permissions”
GoTo exitSub
End If

vk Step4
'Check to seeif the user has dready logged on aslocal
administrator
'by checking the gBInAdministrator flag, otherwise
prompt now.
If Global Declarations.gBInAdministrator = True Then
DoCmd.OpenForm "1-0-0-0-frm- SelectMishap"
Else
DoCmd.OpenForm "1-0-0-6-PopUpFrm-
AdministatorLogon"
End If
Else
MsgBox "Y ou can only administer the database when
logged onto the '(local)' server.”, vbOKOnly +
vbExclamation, "Not Logged On To (local)"
End If

exitSub:
On Error GoTo 0
On Error Resume Next
rst.Close
Set oCmd = Nothing
cnn.Close

Exit Sub

startError:

MsgBox ERR.Description & "Error number: " &
ERR.Number

GoTo exitSub

End Sub

:Function/Sub Name: |blAddEditMishaps MouseMove()
'‘Description: Sets command button text colors.

:Input: None

'‘Output: None

'References. None

Private Sub IblAddEditMishaps MouseMove(Button As
Integer, Shift AsInteger, X AsSingle, Y AsSingle)

' Change menu color when mouseis over button
Me.IblQuery.BackColor = QBColor(15) ' White
Me.lblGraph.BackColor = QBColor(15) ' White
MelblReport .BackColor = QBColor(15) ' White
Me.blAddEditMishaps.BackColor = QBColor(9) ' Blue
Me.lblInvestigate.BackColor = QBColor(15) ' White
Me.lblExit.BackColor = QBColor(15) ' White

Me.IblQuery.Specia Effect = 0 ' Normal
MelblGraph.Sp ecial Effect = 0 Normal
Me.IblReport.Specia Effect = 0 ' Normal
MelblAddEditMishaps.Specia Effect = 1 ' Raised
Me.blInvestigate.Special Effect = 0 ' Normal
Me.lblExit.Special Effect = 0' Normal

Me.lblQuery.ForeColor = QBColor(0) ' Black
Me.blGraph.ForeColor = QBColor(0) ' Black
Me.lblReport.ForeColor = QBColor(0) ' Black
Me.lblAddEditMishaps.ForeColor = QBColor(15) ' White
Me.lblInvestigate.ForeColor = QBColor(0) ' Black
Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'Function/Sub Name: IblExit_Click()

'Description: Closes the program and properly disconnects
fromthe

'SQL server.

‘Input: None

‘Output: None

'References:
' - ConnectionFunctions

Private Sub IblExit_Click()

' Prompt to seeif the user really wantsto quit
DoCmd.Besp
Dim response As Variant

252

response = MsgBox("Are you sure you want to Exit?",
vbYesNo + vhCritical + vbDefaultButton2, "Exit To
Windows?")
If response=vbYesThen 'User choseYes.
ConnectionFunctions.removeConnection
End If

End Sub

:Function/Sub Name: IblExit_ MouseMove
'Description: Sets command button text colors.
:Input: None

:Output: None

'References. None

Private Sub IblExit_MouseM ove(Button As Integer, Shift As
Integer, X AsSingle, Y As Single)

' Change menu color when mouse is over button
Me.lblQuery.BackColor = QBColor(15) ' White
Me.IblGraph.BackColor = QBColor(15) ' White
Me.lblReport.BackColor = QBColor(15) ' White
Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
MelblInvestigate.BackColor = QBColor(15) ' White
MelblExit.BackColor = QBColor(9) ' Blue

Me.lblQuery.Specia Effect = 0 ' Normal
Me.lblGraph.Specia Effect = 0' Normal
Me.lblReport.Specia Effect = 0' Normal
Me.lblAddEditMishaps.Special Effect = 0" Normal
Me.lblInvestigate.Specia Effect = 0" Normal
Me.lblExit.SpecialEffect =1 ' Raised

Me.lblQuery.ForeColor = QBColor(0) ' Black
Me.blGraph.ForeColor = QBColor(0) ' Black
Me.IblReport.ForeColor = QBColor(0) ' Black
Me.IblAddEditMishaps.ForeColor = QBColor(0) ' Black
Me.lblInvestigate.ForeColor = QBColor(0) ' Black
Me.lblExit.ForeColor = QBColor(15) ' White

End Sub

"Function/Sub Name: |blGraph_Click()

'Description: Opensthe Expert graph form (4-0-1-0-frm-
ExpertGraph).

'Input: None
'Output: None

'References:
' - 4-0-1-0-frm-ExpertGraph

Private Sub IblGraph_Click()

DoCmd.OpenForm "4-0-1-0-frm-ExpertGraph"”

End Sub

'Function/Sub Name: IblGraph_MouseMove
:Descripti on: Sets command button text colors.
'Input: None

:Output: None

'References. None

Private Sub IblGraph_MouseMove(Button As Integer, Shift
As Integer, X AsSingle, Y As Single)

' Change menu color when mouseis over button
Me.IblQuery.BackColor = QBColor(15) ' White
Me.lblGraph.BackColor = QBColor(9) ' Blue
Me.IblReport.BackColor = QBColor(15) ' White
Me.blAddEditMishaps.BackColor = QBColor(15) ' White
Me.lblInvestigate.BackColor = QBColor(15) ' White
Me.lblExit.BackColor = QBColor(15) ' White

Me.IblQuery.Specia Effect = 0" Normal
Me.lblGraph.Special Effect = 1 ' Raised
Me.IblReport.Specia Effect = 0 ' Normal
MelblAddEditMishaps.Special Effect = 0" Normal
Me.lblInvestigate.Special Effect = 0 ' Normal
Me.lblExit.Special Effect = 0' Normal

Me.IblQuery.ForeColor = QBColor(0) ' Black
Me.lblGraph.ForeColor = QBColor(15) ' White
Me.lblReport.ForeColor = QBColor(0) ' Black
Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
MelblInvestigate.ForeColor = QBColor(0) ' Black
Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'Function/Sub Name: IblInvestigate Click()

'Description: Launches the Invetigate mdb Access database
in a separate

'process.

‘Input: None

‘Output: None

'References:
' - Investigatemdb

Private Sub IblInvestigate Click()

Dim RetVa

RetVa = Shell("MSACCESS.EXE " & Chr(34) &
GlobalDeclarations.gStrAppPath & "Investigatemdb" &
Chr(34), 1) 'RunAccess.

End Sub

253

:Functi on/Sub Name: |blinvestigate MouseMove()
:Dacripti on: Sets command button text colors.
:Input: None

:Output: None

'References. None

Private Sub IblInvestigate MouseMove(Button As Integer,
Shift AsInteger, X AsSingle, Y As Single)

' Change menu color when mouse is over button
Me.IblQuery.BackColor = QBColor(15) ' White
Me.lblGraph.BackColor = QBColor(15) ' White
Me.IblReport.BackColor = QBColor(15) ' White
Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
Me.lblInvestigate.BackColor = QBColor(9) ' Blue
Me.lblExit.BackColor = QBColor(15) ' White

Me.lblQuery.Specia Effect = 0 ' Normal
Me.IblGraph.Specia Effect = 0 ' Normal
Me.lblReport.Specia Effect = 0' Normal
Me.IblAddEditMishaps.Special Effect = 0 ' Normal
MelblInvestigate.Specia Effect = 1 ' Raised
Me.lblExit.SpecialEffect = 0" Normal

Me.lblQuery.ForeColor = QBColor(0) ' Black
Me.lblGraph.ForeColor = QBColor(0) ' Black
Me.IblReport.ForeColor = QBColor(0) ' Black

Me.lbl AddEditMishaps.ForeColor = QBColor(0) ' Black
Me.lblInvestigate.ForeColor = QBColor(15) ' White
MelblExit.ForeColor = QBColor(0) ' Black

End Sub

'Function/Sub Name: 1blQuery_Click()

'Description: Opens the Expert graph form (2-0-1-0-frm-
QueryMenu).

‘Input: None
‘Output: None

'References:
' - 2-0-1-0-frm-QueryMenu

Private Sub IblQuery_Click()
DoCmd.OpenForm "2-0-1-0-frm-QueryMenu"

End Sub

'Function/Sub Name: 1blQuery_MouseMove()
'Description: Sets command button text colors.

'Input: None

‘Output: None

'References. None

Private Sub IblQuery_MouseMove(Button As Integer, Shift
AsInteger, X AsSingle, Y As Single)

' Change menu color when mouse is over button
Me.lblQuery.BackColor = QBColor(9) ' Blue
Me.lblGraph.BackColor = QBColor(15) ' White
Me.IblReport.BackColor = QBColor(15) ' White
Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
Me.lblInvestigate.BackColor = QBColor(15) ' White
Me.lblExit.BackColor = QBColor(15) ' White

MelblQuery.Specia Effect = 1 ' Raised
Me.IblGraph.Specia Effect = 0 ' Normal
Me.lblReport.Specia Effect = 0 ' Normal
Me.IblAddEditMishaps.Special Effect = 0 ' Normal
Me.lblInvestigate. Specia Effect = 0" Normal
Me.lblExit.Special Effect = 0" Normal

Me.lblQuery.ForeColor = QBColor(15) ' White
Me.lblGraph.ForeColor = QBColor(0) ' Black
Me.IblReport.ForeColor = QBColor(0) ' Black

Me.Ibl AddEditMishaps.ForeColor = QBColor(0) ' Black
Me.blInvestigate.ForeColor = QBColor(0) ‘ Black
Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'Function/Sub Name: IblReport_Click()

:Da:ripti on: Opensthe Report form (8-0-0-1-frm-Reports).
'Input: None

:Output: None

'References:
' - 8-0-0-1-frm-Reports

Private Sub IbIReport_Click()
DoCmd.OpenForm "8 0-0-1-frm-Reports'

End Sub

'Function/Sub Name: IblReport_MouseMove()
:D@cripti on: Sets command button text colors.
'Input: None

:Output: None

'References. None

254

Private Sub IblReport_MouseMove(Button As Integer, Shift
AsInteger, X AsSingle, Y As Single)

' Change menu color when mouse is over button
Me.lblQuery.BackColor = QBColor(15) ' White
Me.IblGraph.BackColor = QBColor(15) ' White
Me.IblReport.BackColor = QBColor(9) ' Blue
Me.lblAddEditMishaps.BackColor = QBColor(15) ' White
Me.lblInvestigate.BackColor = QBColor(15) ' White
Me.lblExit.BackColor = QBColor(15) ' White

Me.lblQuery.Specia Effect = 0 ' Normal
Me.lblGraph.SpeciaEffect = 0" Normal
Me.lblReport.Specia Effect =1 ' Raised
Me.IblAddEditMishaps.Special Effect = 0 ' Normal
MelblInvestigate.Specia Effect = 0 ' Norma
Me.lblExit.SpecialEffect = 0" Normal

Me.lblQuery.ForeColor = QBColor(0) ' Blak
Me.lblGraph.ForeColor = QBColor(0) ' Black
Me.IblReport.ForeColor = QBColor(15) ' White
Me.lblAddEditMishaps.ForeColor = QBColor(0) ' Black
Me.blInvestigate.ForeColor = QBColor(0) ‘ Black
Me.lblExit.ForeColor = QBColor(0) ' Black

End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Eachform getsitsown version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
‘Output: None

'References:
' - clFormWindow

Public Sub MoveToCenter(ByVal strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6
.I)_eft = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCL ASS-PleaseWait

Option Explicit

' FORM DESCRIPTION

'‘ClassName: PleaseWait
'‘Author: Pat Flanders & ScottTufts

'Description: Thisclassis the splash screen that user sees at
‘program initiation. It is responsible for setting global

properties
'for the session at startup.

'References. None

kA AR A Ik AR A IR IR I A hhkhhhkkhkhkhkhhkkhkhkkhkhkhkhkhkrhhkxhkkx

' FUNCTIONS

Tkkkkkhkhkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkkkkk

'Function/Sub Name: Command17_Click()

'Description: Closesthe form. Thisbutton isnot visible
during

'normal program operation and must be turned onin design
view

'to useit. Itisprovided for troubleshooting connection
problems

'which often result in a"hang" at this screen with now way to
'terminate program execution unless this button is enbled.

'Input: None
'Output: None

'References. None

Private Sub Command17_Click()
DoCmd.Close acForm, "PleaseéWait"
End Sub

'Function/Sub Name: Form_L oad()

255

'Description: Setsthe global propertiesfor the session. This
includes

‘application icon, margins, and other default behaviors.
'Input: None

‘Output: None

'References. None

Private Sub Form_L oad()
Screen.MousePointer = 11

'Determine OS and store value in aglobal variable

‘A value of 2 or higher means WIN 2K or WIN NT

Dim myVer As OSVERSIONINFO

DimqgAsLong

myVer.dwOSVersoninfoSize = 148

& = GetVersonEx(myVer)

‘Uncomment thisline for complet of/s version description
information

'MsgBox "Platform ID =" & myVer.dwPlatformld & ",
Version=" & myVer.dwMgorVerson& "." &
myVer.dwMinorVersion & " Build" &
(myVer.dwBuildNumber And & HFFFF&:)

Globa Declarations.gStrOSType = myVer.dwPlatformld

'Set the application icon
CurrentProject.Properties. Add "Applcon”,
Application.CurrentProject.Path & "\hfacs.ico”
CurrentProject.Properties("Applcon”) =
Application.CurrentProject.Pat h & "\hfacs.ico"
Application.RefreshTitleBar

DoEvents ‘Redraw screen

'Set program GLOBAL start -up options.
Application.SetOption "Show Startup Dialog Box", False
Application.SetOption "Left Margin”, 1
Application.SetOption "Right Margin®, 1
Application.SetOption "Top Margin”, 1
Application.SetOption "Bottom Margin”, 1
Application.SetOption "Default Find/Replace Behavior”, 1
Application.SetOption "Behavior Entering Field", 1
Application.SetOption "ShowWindowslnTaskBar", False

DoEvents 'Redraw screen
Screen.MousePointer = 0

End Sub

MODULE-ConenctionFunctions

Option Compare Database
Option Explicit

MODULE DESCRIPTION

'‘ClassName: ConnectionFunctions.bas

'‘Author: Pat Flanders & Scott Tufts

'‘Description: This module containsthe vast majority of the
"hel per

‘functions used by the program. It contains functions for
connecting

‘and disconnecting the application to a SQL server, replacing
the

'database via FTP and disk file, toggling database type,
printing

'the MS Chart graphs from the windows clipboard, as well as,
‘all command bar functions and command bar menu scripts.

'References:
! - HFACSdII
- HFACSClipboard.dil

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkx

FUNCTIONS

Tkhkkkh kA A kKA A AR A AR A IR A I A A h kA hhhkhkhhkhkhhhkhkhkdhkhkdhkhkxkx

'Function/Sub Name: CresateConnection()

‘Description: Connects the gpplication to a SQL server and
provides

‘theinterface for the HFACS.dIl. Readstheinitial valuesfor
'most global program variablesfrom the HFACS.ini filevia
the

'HFACS.dII and the SQL Server that becomes connected.
Verifiesthe

'database type and ensure that the Server being connected to
is of

'the proper type (military vicecivilian).

‘Input: None
‘Output: None

'References:
' - HFACSdII

Public Sub CreateConnection()
On Error GoTo startError
Set oHFACSConnection = New HFACSConnection
Dim bConnResults As Boolean
bConnResults = False

'Read in the values from the .dll

256

gStrUID = oHFACSConnection.User
gStrPWD = oHFA CSConnection.Password
gStrServerName = oHFACSConnection.ServerName
gStrDatabaseFileName =
OHFA CSConnection.DatabaseFileName
gStrDatabaseName = oHFA CSConnection.DatabaseName
gStrAppPeth = oHFACSConnection.AppPeth
gStrAutoL ogon = oHFA CSConnection.AutomaticL ogon
gStriirstRun = oHFA CSConnection.FirstRunCheck
gStrNTauth = oHFACSConnection.UseNTAuth
gStrTypeDB = oHFACSConnection.TypeDatabase
gTheConnectionString =
0oHFACSConnection.ConnectionString

StartWrongTypConnMade:
While bConnResults = False
bConnResults = oHFA CSConnection.doConnect
StartL ogon:

If bConnResults = False Then

Dim response As Variant

DoCmd.Beep

response = MsgBox("An error occurred while
trying to connect to the server." & Chr(13) & Chr(13) &
"Y ou must connect to aserver in order to usethe HFACS
database" & Chr(13) & Chr(13) & "You can RETRY by
specifying new logon information or CANCEL and exit to
Windows.", vbRetryCancel + vbExclamation +
vbDefaultButtonl, "Problem With Connection')

If response = vbCancel Then
'Exit to Windows
Set oHFACSConnection = Nothing
ConnectionFunctions.removeConnection

Else
‘Logon with prompt
bConnResults =
0HFACSConnection.doConnect(PROMPT)
End If
End If
Wend

'Reset all thelocal global variables to capture changes
made during the
'logon process.
gStrUID = oHFACSConnection.User
gStrPWD = oHFACSConnection.Password
gStrServerName = oHFA CSConnection.ServerName
gStrDatabaserileName =
OHFA CSConnection.DatabaseFileName
gStrDatabaseName = oHFA CSConnection.DatabaseName
gStrAppPath = oHFACSConnection.AppPath
gStrAutoL ogon = oHFA CSConnection.AutomaticL ogon
gStrFirstRun = oHFA CSConnection.FirstRunCheck
gStrNTauth = oHFACSConnection.UseNTAuth
gStrTypeDB = oHFACSConnection. TypeDatabase
gTheConnectionString =
0oHFA CSConnection.ConnectionString

Application.CurrentProject.OpenConnection
Global Declarations.gTheConnectionString

If Application.CurrentProject.|sConnected = False Then
GoTo StartLogon

'Run stored procedure to make sure you are connecting to
theright type

'database (military or civilian).

'Declare objects for querying a stored procedure to get the
new record

Dim cnn As Connection

Dim oCmd As ADODB.Command

Dim rst As ADODB.Recordset

Set cnn = CurrentProject.Connection

cnn.CursorL ocation = adUseClient

Set rst = New ADODB.Recordset

Set oCmd = New ADODB.Command
oCmd.ActiveConnection = cnn

oCmd.CommandText = """9-0-0-1-flanL ookupDBType""
oCmd.CommandType = adCmdStoredProc

'Run the SP
Set rst = oCmd.Execute

'Get the record count

rst.MoveFirst

Dim tempString As String

tempString = rst! Dat abaseType 'Get the database type

‘Clean up

rst.Close

Set oCmd = Nothing
cnn.Close

'‘MsgBox "Global: " & GlobalDeclarations.gStrTypeDB &
" Read From Remote DB: " & Trim(tempString)
If GlobalDeclarations.gStrTypeDB <> Trim(tempString)
Then
Dim sTempType As String
If Trim(tempString) = "C" Then
sTempType="CIVILIAN but this verson of HFACS
isconfigured for MILITARY. "
Else
sTempType="MILITARY but thisversion of
HFACS s configured for CIVILIAN. "
End If
MsgBox "Y ou are trying to connect to a database
configured for" & sTempType& _
Chr(13) & Chr(13) & "Please connect to another
server.", vbOKOnly + vbExclamation, _
"Can't Connect To That Type Database"
bConnResults = False
GoTo StartWrongTypConnMade
End If

exitSub:
Exit Sub

startError:
'‘MsgBox Err.Description
'‘MsgBox Err.Number
bConnResults = False
Resume StartLogon

End Sub

257

'Function/Sub Name: InitConnection()

'Description: Disables the Access "close" button on the main
access

‘window, preventing users from improperly shutting down
the

‘application. Launchesthe"PleaseWait" form whilethe
connection

'to the SQL server isinitidized, giving theillusion of
'separate threads of execution and providing the user ascreen
'to look at during thislong process.

'Input: None
'‘Output: None
'References:

- PleaseWait Form
' - CloseCommand Class

Function InitConnection()
On Error GoTo startError

'Disable the Access master window clos control button
Dim ¢ As CloseCommand

Set ¢ = New CloseCommand

‘Disable Close menul.

c.Enabled = False

DoCmd.OpenForm "PleaseWait", acNormal, "", ",
acReadOnly, acNormal

DoCmd.RepaintObject acForm, "PleaseWait"

ConnectionFunctions.CreateConnection

DoCmd.Close acForm, "PleaseWait"

exitSib:
Exit Function

startError:
Resume exitSub

End Function

'Function/Sub Name: changeServer()

'Description: Provides the functionality to change server
connections

'vViathe HFACS.dII.

'Input: None

'Output: Success or failure.

'References:
' - HFACSdII

Public Function changeServer() As Boolean
Dim bResult As Boolean
StartWrongTypConnMade:

'Bring up the logon prompt
bResult = oHFA CSConnection.doConnect(PROMPT)

If bResult = True Then

'Reset all thelocal global variablesto capture changes
made during the
'logon process.
gStrUID = oHFACSConnection.User
gStrPWD = oHFACSConnection.Password
gStrServerName = oHFACSConnection.ServerName
gStrDatabaseFileName =
OoHFA CSConnection.DatabaseFileName
gStrDatabaseName =
OoHFA CSConnection.DatabaseName
gStrAppPath = oHFACSConnection.AppPath
gStrAutoLogon =
0oHFA CSConnection.AutomaticL ogon
gStrRirstRun = oHFA CSConnection.FirstRunCheck
gStrNTauth = oHFACSConnection.UseNTAuth
gStrTypeDB = oHFACSConnection. TypeDatabase
gTheConnectionString =
0oHFACSConnection.ConnectionString

Application.CurrentProject.OpenConnection
Global Declarations.gTheConnectionString

'Run stored procedure to make sure you are connecting
totheright type

'database (military or civilian).

'Declare objects for querying a stored procedure to get
the new record

Dim cnn As Connection

Dim oCmd As ADODB.Command

Dim rst As ADODB.Recordset

Set cnn = CurrentProject.Connection

cnn.CursorL ocation = adUseClient

Set rst = New ADODB.Recordset

Set oCmd = New ADODB.Command

oCmd.ActiveConnection = cnn

oCmd.CommandText ="""9-0-0-1-
flanLookupDBType"""

oCmd.CommandType = adCmdStoredProc

'Run the SP
Set rst = oCmd.Execute

'Get the record count

rst.Moverirst

Dim tempString As String

tempString = rst! DatabaseType 'Get the database type

‘Clean up

rst.Close

Set oCmd = Nothing
cnn.Close

'‘MsgBox "Global: " & GlobalDeclarations.gStrTypeDB
& " Read From Remote DB: " & Trim(tempString)
If Global Declarations.gStrTypeDB <>
Trim(tempString) Then
Dim sTempType As String
If Trim(tempString) ="C" Then
sTempType="CIVILIAN but this version of
HFACSisconfigured for MILITARY. "
Else
sTempType="MILITARY but this version of
HFACS s configured for CIVILIAN. "

End If
MsgBox "Y ou are trying to connect to a database
configured for " & sTempType& _
Chr(13) & Chr(13) & "Please connect to another
server.", vbOKOnly + vbExclamation, _
"Can't Connect To That Type Database"
bResult = False
GoTo StartWrongTypConnMade
End If

Form_MainMenu.Ibl ServerConnectedTo.Caption =
"Connected To Server: " &
Global Declarations.gStrServerName
Form_MainMenu.Refresh

changeServer = True
Else

changeServer = False
End If

End Function

'Function/Sub Name: getUpdateFTP()

'Description: Provides the functionality replace the database
onthe

'local SQL server viaan FTP process. THE USER MUST
BE LOGGED ON

'WITH THE SA ACCOUNT, BEING AN
ADMINISTRATOR ISNOT ENOUGH.

'Input: None
'Output: Success or failure.

'References:
' - HFACSdII

Public Function getUpdateFTP() As Boolean

If Global Declarations.gStrUID <> "sa"' Then
MsgBox "Y ou must be logged on as SA to replace the
database”, vbOK Only + vbExclamation, "User Is Not SA"
getUpdateFTP = Fase
Exit Function
End If

Dimi AsInteger
getUpdateFTP = oHFACSConnection.getUpdateFTP

On Error GoTo startError
If getUpdateFTP = True Then
Application.CurrentProject.CloseConnection 'Close the
Connection
Application.CurrentProject.OpenConnection 'Set the
connection to nothing
DoCmd.OpenForm "MainMenu"
getUpdateFTP = True
Else
getUpdateFTP = Fase
ConnectionFunctions.CreateConnection
End If

exitSub:

258

' Set oHFACSConnection = Nothing
Exit Function

startError:
‘This block of codeisrequired to get the connection to
close.
It isadocumented M S Access 2000 bug.
i=i+1
If i <99 Then 'Continue trying to close connection.
DoEvents
Resume
End If

Resume exitSub

End Function

'Function/Sub Name: getUpdateFromDisk()

'Description: Provides the functionality replace the database
onthe

'local SQL server viaan file on aCD or network share
process.

THE USER MUST BE LOGGED ON WITH THE SA
ACCOUNT, BEING AN ADMINISTRATOR

'ISNOT ENOUGH.

'Input: None
'Output: Success or failure.

'References:
' - HFACSdII

Public Function getUpdateFromDisk() As Boolean

If Global Declarations.gStrUID <> "sa"' Then
MsgBox "Y ou must be logged on as SA to replace the
database”, vbOK Only + vbExclamation, "User Is Not SA"
getUpdateFromDisk = False
Exit Function
End If

Dimi AsInteger 'Counter

getUpdateFromDisk =
OoHFA CSConnection.getUpdateDisk

On Error GoTo startError
If getUpdateFromDisk = True Then
Application.CurrentProject.CloseConnection 'Close the
Connection
Application.CurrentProject.OpenConnection 'Set the
connection to nothing
DoCmd.OpenForm "MainMenu"
getUpdateFromDisk = True
Else
getUpdateFromDisk = False
ConnectionFunctions.CreateConnection
End If

exitSub:
Exit Function

startError:

259

‘This block of code isrequired to get the connection to
close.

"It is a documented M S Access 2000 bug.

i=i+1

If i <99 Then 'Continue trying to close connection.
DoEvents
Resume

End If

Resume exitSub

End Function

:Function/Sub Name: removeConnection()

'Description: Properly disconnects the application from the
;Srl_/er and terminatesthe Access session.

:Input: None

:Output: None

'References. None

Public Function removeConnection()

Dimi AsInteger 'Counter

On Error GoTo startError

Application.CurrentProject.CloseConnection 'Close the
Connection

Application.CurrentProject.OpenConnection 'Set the
connection to nothing

Set oHFACSConnection = Nothing

exitSub:
Application.CommandBars("mnuProgramMain”).Visible =
False
DoCmd.Quit
removeConnection = True
Exit Function

startError:
"This block of codeis required to get the connectionto
close.
"It is a documented M S Access 2000 bug.
i=i+1
If i <99 Then 'Continue trying to close connection.
DoEvents
Resume
End If

Resume exitSub

End Function

'Function/Sub Name: CommandbarEnable()
'‘Description: Allows manipulation of command (menu bars).

"Thisfunction hasfour arguments:

'‘Cmdbar isaCommmandBar object that represents the
command

'bar containing the menu item to be enabled or disabled.

'CmdBarEnabled is a Boolean value in which you pass
"True"

‘or "False" in order to enable or disable the menu item being
'manipul ated.

TopLevel isan integer representing the index of the Top-
level
'menu item being manipulated.

'Sublevel is an optional integer representing the index of the
'menu item being manipulated under the Top-level menu
item.

'Example: To disable only the "File" menu item on the
"NorthwindCustomMenuBar" command bar, use the
following:

'‘CommandbarEnable(Commandbars(" NorthwindCustomMen
uBar"),Fase 1)

'Example2: To disable the "Get external Data' Menu item
under

'the "File" menu item on the "NorthwindCustomMenuBar"
command

'bar, use the following:

'‘CommandbarEnable(Commandbars("NorthwindCustomMen
uBar"),Fase,1,3)

"To "re-enable" the same menu item, use the following:

'‘CommandbarEnable{Commandbars("NorthwindCustomMen
uBar"),True,1,3)

Public Function CommandbarEnable(Cmdbar As
CommandBar, _
CmdbarEnabled As Boolean, TopLevel AsInteger,
Optional Sublevel As Integer)

Dim SubCommandbar
On Error GoTo Err_CommandBarEnable

'If the commmand bar is not visible, make it so.
If Cmdbar.Visible = False Then Cmdbar.Visible = True

'If no menu item on a submenu is selected for
enabling\disabling,
‘enable\disable the top level menu choice only.
If IsMissing(Sublevel) Or Sublevel =0 Then
Cmdbar.Control(TopL evel).Enabled =
CmdbarEnabled
'If amenu item on a submenu is selected for
‘enabling\disabling, do so now.
Else
Set SubCommandbar =
Cmdbar.Controls(TopLevel)
SubCommandbar.Controls(Sublevel).Enabled =
CmdbarEnabled
End If

Exit_CommandBarEnable:
Exit Function

260

Err_CommandBarEnable:
MsgBox "Error " & CSIr(ERR) & " " &
ERR.Description & _
" has occurred in the CommandBarEnable Function”,
vbOKOnly, _
"Error Detected”
Resume Exit_CommandBarEnable

End Function

'Function/Sub Name: toggleDBType()

'Description: Properly disconnects the application from the
;Srl_/er and terminatesthe Access session.

:Input: None

:Output: None

'References. None

Public Function toggleDBType() As Boolean

Dim response As Variant
Dim sDBType As String

If GlobalDeclarations.gStrTypeDB ="C" Then
sDBType = "Qvilianto Military. "

Else
sDBType = "Military to Civilian. "

End If

DoCmd.Beep

response = MsgBox("Y ou are about to toggle this database
from" & sDBType & Chr(13) & Chr(13) & "Thismay
requireyou to reconnect to HFACS." & Chr(13) & Chr(13)
& "Do you wish to continue?', vbY esNo + vbQuestion +
vbDefaultButton2, "Toggle Database Type?")

If response = vbY es Then

'‘Declare objects for querying a stored procedure to get
the new record

Dim rsTheNewMishap As New Recordset

Dim commandADO As New ADODB.Command

Dim conADO As New ADODB.Connection

' Thisis where we create the Connection object.
Set conADO = CurrentProject.Connection

If Globa Declarations.gStrTypeDB ="C" Then
GlobalDeclarations.gStrTypeDB = "M"
rsTheNewM ishap.Open "UPDATE tblDatabaseType
SET thlDatabaseType.DatabaseType = 'M' WHERE
tbl DatabaseType.DatabaseType = 'C", conADO,
adOpenDynamic, adL ockOptimistic, adCmdText
OHFACSConnection. TypeDatabase = "M"
Else
GlobalDeclarations.gStrTypeDB ="C"
rsTheNewMishap.Open "UPDATE thl DatabaseType
SET thlDatabaseType.DatabaseType = 'C' WHERE
thlDatabaseType.DatabaseType = 'M"', conADO,
adOpenDynamic, adL ockOptimistic, adCmdText

oHFACSConnection.TypeDatabase = "C"
End If

OoHFACSConnection.writelNIFile

'Destroy objects used for the query
Set commandADO = Nothing

Set conADO = Nothing

Set rsTheNewMishap = Nothing

Dimi AsInteger ' counter

On Error GoTo startError

Application.CurrentProject.CloseConnection 'Close the
Connection

Application.CurrentProject.OpenConnection 'Set the
connection to nothing

DoCmd.OpenForm "MainMenu"

toggleDBType = True
GoTo exitSub

End If
toggleDBType = False

exitSub:
Exit Function

startError:
‘This block of codeisrequired to get the connection to
close.
"It is a documented M S Access 2000 bug.
i=i+1
If i <99 Then 'Continue trying to close connection.
DoEvents
Resume
End If

Resume exitSub

End Function

'Function/Sub Name: copyGraphToClipboard()
'‘Description: Copiesthe MS Chart object on form 4-0-1-2-
frm-TheActual Graph

'to the windows clipboard.

‘Input: None

'Output: Success or failure.

'References:
' - 4-0-1-2-frm-TheActud Graph

Public Function copyGraphToClipboard() As Boolean

' Call the EditCopy method to send the chart to the
clipboard
Formd [4-0-1-2-frm-
TheActua Graph] .chtTheGraph.EditCopy

'For future use. At this point you could
'save the data on the clipboard as a bitmap

261

'you can also use clipboard viewer to see everything
'SavePicture Clipboard.GetData, "ctestl.bmp"”

copyGraphToClipboard = True

End Function

'Function/Sub Name: toggleX Labels()

'Description: Togglesthe X axis vaues visible/hidden for the
'MS Chart object on form 4-0-1-2-frm-TheA ctual Graph.

'Input: None
'Output: Success or failure.

'References:
' - 40-1-2-frm-TheActua Graph

Public Function toggleX Labels() As Boolean

"Toggle visibility of X-Axis labels
If Formsl[4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAxisldX).Axi
sScale.Hide = False Then
Forms![4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAXxisldX).Axi
sScaleHide=True
Else
Formsl[4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAXxisldX).Axi
sScale.Hide = False
End If

toggleXLabels = True

End Function

'Function/Sub Name: toggleY Labels()

'Description: Togglesthe Y axis values visible/hidden for the
'MS Chart object on form 4-0-1-2-frm-TheA ctua Graph.

'Input: None
'Output: Success or failure.

'References:
' - 40-1-2-frm-TheActua Graph

Public Function toggleY Labels() As Boolean

"Toggle visibility of Y -Axis labels
If Formsl[4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAXisldY).Axi
sScale.Hide=True Then
Formsl[4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAXxisldY).Axi
sScaeHide = False
Forms![4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAXxisldY 2).A
xisScale.Hide = False

Else
Forms![4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAXisldY).Axi
sScaleHide=True
Formsl[4-0-1-2-frm-
TheActua Graph].chtTheGraph.Plot. Axis(VtChAXisldY 2).A
xisScaleHide = True
End If

toggleY Labels= True

End Function

'Function/Sub Name: sendClipToPrinter()

'Description: Printsthe MS Chart object on form 4-0-1-2-
frm-TheA ctual Graph.

'Input: None
'Output: Success or failure.
'References:

- 4-0-1-2-frm-TheActua Graph
' - HFACSClipboard.dil

Public Function sendClipToPrinter() As Boolean
On Error GoTo startError

'Copy the graph to the clipboard
DoCmd.RunMacro “"macroM nuCopyGraphToClipboard”

'Print small graphs portrait and large ones landscape
Dim oMyClipObject As New clsClipBoard
If Formsl[4-0-1-2-frm-TheActua Graph].togEnlarge.Value
=-1Then
oMyClipObject.clipOutL andscape
Else
oMyClipObject.clipOutPortrait
End If

sendClipToPrinter = True

exitSub:
Set oMyClipObject = Nothing

262

Exit Function

startError:

MsgBox "There was a problem with your default printer.
Check to ensure that it is on-line and loaded wi th paper and
try printing again.", vbOKOnly + vbExclamation, "Problem
Printing”

sendClipToPrinter = False

Resume exitSub

End Function

'Function/Sub Name: waitScreen()

'Description: Shows the please wait screen with spinning
globe

‘while calculating report data.

'Input: None

'‘Output: None

'References:
- 7-0-0-1-PopUpFrm-waitProgressBar

Function waitScreen(sReportName As String) As Boolean
On Error GoTo startError

DoCmd.OpenForm " 7-0-0-1-PopUpFrm-
waitProgressBar", acNormal, ", ", acReadOnly, acNormal
DoCmd.RepaintObject acForm, "7-0-0-1-PopUpFrm-

waitProgressBar"
DoCmd.OpenReport sReportName, acViewPreview
DoCmd.Close acForm, " 7-0-0-1-PopUpFrm-
waitProgressBar"

waitScreen = True

exitSub:
Exit Function

startError:
waitScreen = False
Resume exitSub

End Function

MODULE-DeterminesOSDeclares

Option Explicit

Type OSVERSIONINFO

dwOSVersioninfoSize AsLong

dwMajorVersion AsLong

dwMinorVersion AsLong

dwBuildNumber AsLong

dwPlatformld As Long

szCSDVersion As String * 128 * Maintenance string for PSS
usge

End Type

Declare Function GetVersionEx Lib "kernel32" Alias
"GetVersonExA" (IpVersioninformation As
OSVERSIONINFO) AsLong

Declare Function GetSystemMetrics Lib "user32" (ByVa
nindex AsLong) AsLong

Public Const SM_CLEANBOOT = 67

Public Const SM_DEBUG = 22

Public Const SM_SLOWMACHINE =73

Public Const VER_PLATFORM_WIN32s=0

Public Const VER_PLATFORM_WIN32_WINDOWS =1
Public Const VER_PLATFORM_WIN32 NT =2

' MODULE DESCRIPTION

'Class Name: DetermineOSDeclares.bas

'‘Author: Pat Flanders & Scott Tufts

'Description: Contains various functions for determining
system

'properties like O/S type and version of Accessthat is
running.

"The O/S type functions are declared above and result in
direct
'querying of the Windows AP!.

'References. None

TR A A KA AR A AR A AR A IR A IR A IR A IR A A h kA hkhkhkhkhkhkhkkhkhkkkkkx

FUNCTIONS

TRA AR A AR A IR A IR A IR A IR A Ak khhkhhkhkhkhkhkhkhkhkhkkkhkkkkx

'Function/Sub Name: 1sRuntime()

'‘Description: Determines if Access runtime is being used to
runthe

‘application. Access runtime has no support for reports.
'Input: None

'Output: Success or failure.

'References. None

263

Function IsRuntime() As Boolean

' Check if this gpplication is using the run-time version of
Access.

IsRuntime = SysCmd(acSysCmdRuntime)

End Function

'Function/Sub Name: 1sRunning()

'Description: To prevent a second instance from loading if a
user mistakenly

‘attemptsto launch it twice. Thiscodeis caled from the
autoexec

'macro to test whether the app is already running and
terminate

'thelaunch if acopy of itisaready open.

‘Input: None
'Output: -1 meansthat an instanceis aready running.

'References. None

Function IsRunning() As Integer
If TestDDEL ink(Application.CurrentProject.Name) Then
'A -1 meansthat thisis a second instance.

IsRunning = -1
Else
IsRunning =0
End If
End Function

" Helper Function for IsRunning() above
Function TestDDEL ink(ByVal strAppName$) As Integer

Dim varDDEChanndl As Variant

On Error Resume Next

Application.SetOption ("Ignore DDE Requests'), True

varDDEChannel = DDElnitiate("M SAccess',
strAppName)

' When the app isn't aready running thiswill error
If ERR Then
TestDDELink = False
Else
TestDDELink = True
DDETerminate varDDEChannel
DDETerminateAll
End If
Application.SetOption ("Ignore DDE Requests'), False

End Function

MODULE-ezSizingFunctions

Option Compare Database
Option Explicit

MODULE DESCRIPTION

'Class Name: ezSizingFunctions.bas

'‘Author: EZ Sizing Functions

Copyright (C) 2000 Database Creations, Inc.
' Revision 6/14/00
' based on 8/25/99 code with revisionss

'Description: Contains various functions for dynamicaly
resizing

'the formsin the application based on the user's screen
resolution.

'References. None

TR AR A KK A KR A IR A AR A IR A IR A IR A I A Ak Ak khkhkkhkhkkhkhkkhkhkkkkkx

FUNCTIONS
TRA A KA AR A KR A AR A IR A IR A IR A IR A I A A kA hkhkhkhkhkkhkhkkhkhkkkkkx
'Functions are defined below by the author and are Copyright
of
'Database Creations, Inc.

Type RECT
x1 AsLong
y1lAslLong
x2 AsLong
y2 AslLong

End Type

Type TEXTMETRIC
tmHeight As Integer
tmAscent As Integer
tmDescent As Integer
tminternalLeading As I nteger
tmExternalLeading As Integer
tmAveCharWidth As Integer
tmMaxCharWidth As Integer
tmWeight As Integer
tmitalic AsString * 1
tmUnderlined As String * 1
tmStruckOut As String * 1
tmFirstChar As String * 1
tmLastChar As String* 1
tmDefaultChar As String* 1
tmBreakChar As String* 1
tmPitchAndFamily As String * 1
tmCharSet As String * 1
tmOverhang As Integer
tmDigitizedAspectX As Integer
tmDigitizedAspectY AsInteger

End Type

Declare Function |sZoomed Lib "user32" (ByVa hwnd As
Long) AsLong

264

Declare Function Islconic Lib "user32" (ByVd hwnd As
Long) AsLong

Declare Function GetDesktopWindow Lib "user32" () As
Long

Declare Function GetWindowRect Lib "user32" (ByVa
hwnd As Long, rectangle AsRECT) AsLong

Declare Function GetTextMetrics Lib "gdi32" Alias
"GetTextMetricsA" (ByVa hdc AsLong, IpMetrics As
TEXTMETRIC) AsLong

Declare Function GetWindowDC Lib "user32" (ByVa hwnd
AsLong) AsLong

Declare Function ReleaseDC Lib "user32" (ByVa hwnd As
Long, ByVal hdc AsLong) AsLong

Declare Function SetMapMode Lib "gdi32" (ByVa hdc As
Long, ByVa nMapMode As Long) AsLong

Public Sub ezSizeForm(xForm As Form, ScaleFactor As
Single, Optional EchoOff As Boolean = True)

"This subroutine will resize the form specified by parameter
xForm by the factor of ScaleFactor

'If scalefactor is 0 or negative, automatic scaling will occur
based on the following

' Vaue Formsoriginaly designed for

0 640x480
' -1 800x 600
' -2 1024x 768
' -3 1280x 1024
' -4 1600x 1200
' -5 1152x864 OR 1152 x 870

Dim ActiveForm As Object
Dimi AsInteger
Dim D(200, 3) AsSingle

On Error GoTo erorHandler

If ScaleFactor = 1 Then GoTo Done

If ScaleFactor <= 0 Then ScaleFactor =
ezGetScal eFactor(Scal eFactor)

If EchoOff Then DoCmd.Echo False
Set ActiveForm = xForm

'If form in datasheet view then don't resize
If xForm.CurrentView <> 1 Then GoTo Done

'If the form is maximized then don't resize
If 1sZoomed(xForm.hwnd) <> 0 Then GoTo Done

With ActiveForm
If ScaleFactor > 1 Then ‘form is growing
‘deal with section heights and form width first
On Error Resume Next 'handle error for non-existent
sections
Fori=0To4
.Section(i).Height = .Section(i).Height *
ScaleFactor
Nexti
On Error GoTo errorHandler
Width = Width * ScaleFactor
End If

‘save old dimensions of subforms/groups/tabs
Fori=0To.Count-1
Sdect Case .Controlg(i).Control Type

Case acOptionGroup, acSubform, acTabCtl
D(i, 0) = .Controls(i).Width
D(i, 1) = .Controls(i).Height
D(i, 2) = .Controls(i).L&ft
D(i, 3) = .Controls(i).Top
End Select
Next i

‘deal with controls
Fori=0To.Count-1
Select Case .Controls(i).Control Type
Case acOptionGroup, acPage
‘do nothing now
Case acTabCltl
.Controls(i). TabFixedWidth =
.Controls(i). TabFixedWidth * ScaleFactor
.Controlg(j). TabFixedHeight =
.Controls(i). TabFixedHeight * ScaleFactor
If .Controls(i).Left < 0 Then .Controls(i).Left =0
.Controls(i).Left = .Controls(i).Left * ScaleFactor
.Controls(i).Top = .Controls(i). Top * ScaleFactor
.Control(i).Width = .Control s(i).Width *
ScaleFactor
.Controls(i).Height = .Controls(i).Height *
ScaleFactor
.Controls(i).fontsize= .Controls(i).fontsize *
ScaleFactor
Case acSubform
On Error Resume Next
ezSizeFForm .Controls(i).Form, ScaleFactor,
False
On Error GoTo errorHandler
CaeElse
On Error Resume Next
If .Controls(i).Left < 0 Then .Controls(i).Left = 0
.Controls(i).Left = .Controls(i).Left *
ScaleFactor
.Controls(i).Top = .Controls(i).Top *
ScaleFactor
.Cortrols(i).Width = .Control(i).Width *
ScaleFactor
.Controls(i).Height = .Controls(i).Height *
ScaleFactor
.Controls(i).fontsize = .Controls(i).fontsize *
ScaleFactor
On Error GoTo errorHandler
End Sdlect
Next i

‘fix dimensions of subforms/groups/tabs
If ScaleFactor > 1 Then
On Error Resume Next
Fori=0To4
.Section(i).Height = .Section(i).Height * ScaeFactor
Nexti
On Error GoTo arorHandler
End If
Fori=0To.Count-1
Select Case .Controls(i).Control Type
Case acSubform
.Controls(i).Width = D(i, 0) * ScaleFactor
.Controls(i).Height = D(i, 1) * ScaleFactor
.Controls(i).Left = D(i, 2) * ScaleFactor
.Controls(i).Top = D(i, 3) * ScaleFactor
End Sdlect
Next i
Fori=0To.Count-1
Select Case .Controls(i).Control Type

265

Case acOptionGroup, acTabCltl
.Controls(i).Left = D(i, 2) * ScaleFactor
.Controls(i).Top = D(i, 3) * ScaleFactor
.Controls(i).Width = D(i, 0) * ScaleFactor
.Controls(i).Height = D(i, 1) * ScaleFactor

End Sdlect
Next i

'Resize form dimensions and fit window to form
On Error Resume Next

Fori=0To4

.Section(i).Height =0

Next i
On Error GoTo errorHandler
Width=0
DoCmd.RunCommand acCmdSizeToFitForm
GoTo Done

errorHandler:
If ERR.Number = 2046 Then GoTo Done
MsgBox "Error with control " & .Controls(i).Name &
vbCrLf & _
"L:" & .Controls(i).Left & " -" & D(i, 2) & vbCrLf &
"T:" & .Controls(i).Top & "-" & D(i, 3) & VbCrLf &

"W: " & .Controls(i).Width & "-" & D(i, 0) &
VvbCrLf & _

"H: " & .Controls(i).Height & "- " & D(i, 1) &
vbCrLf

Done:
If EchoOff Then DoCmd.Echo True
End With

End Sub

Function ezGetScreenRes() As String
"Thisfunction returns the windows screen size
Dim R AsRECT

Dim hwnd AsLong

Dim RetVa AsLong

hwnd = GetDesktopWindow()
RetVd = GetWindowRect(hwnd, R)
ezGetScreenRes = (Rx2- Rx1) & "x" & (Ry2- Ryl)

End Function

Public Function ezGetScal eFactor(S) As Single
'Returns a scale factor for resizing based on the passed
parameter S
" which should represent the screen size aform was designed
for
' the scale factor returned is based on the current screen
resolution
Select Case S
Case0 '640x480
Select Case ezGetScreenRes
Case "640x480"
ezGetScaleFactor = 1
Case "800x600"
ezGetScaeFactor = 1.2
Case "1024x768"
ezGetScaleFactor = 1.5
Case "1152x864", "1152x870"
ezGetScaeFactor = 1.7
Case "1280x1024"

ezGetScaeFactor = 1.9
Case "1600x1200"
ezGetScaleFactor = 2.4
End Sdect
Case-1 '800x 600
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.8
ezGetScaleFactor = 1
Ca="1024x768"
ezGetScaeFactor = 1.2

Case "1152x864", "1152x870"

ezGetScaeFactor = 1.4
Case "1280x1024"
ezGetScaeFactor = 1.5
Case "1600x1200"
ezGetScaeFactor = 1.9
End Sdect
Case-2 '1024 x 768
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.6
ezGetScaeFactor = 0.7
Case "1024x768"
ezGetScaleFactor = 1

Case"1152x864", "1152x870"
ezGetScaleFactor = 1.05

Case "1280x1024"
ezGetScaleFactor =1.1
Case "1600x1200"
ezGetScaeFactor = 1.4
End Sdect
Case-3 '1280x 1024
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.5
ezGetScaeFactor = 0.6
Case "1024x768"
ezGetScaeFactor = 0.8

Case "1152x864", "1152x870"

ezGetScaeFactor = 0.9
Case "1280x1024"
ezGetScaeFactor = 1
Case "1600x1200"
ezGetScaeFactor = 1.1
End Sdect
Case-4 '1600x 1200
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.3
ezGetScaeFactor = 0.4
Case "1024x768"
ezGetScaeFactor = 0.6

Case"1152x864", "1152x870"
ezGet ScaleFactor = 0.65

Case "1280x1024"
ezGetSca eFactor = 0.7
Case "1600x1200"
ezGetScaeFactor = 1
End Sdect

Case-5 '1152x 864 OR 1152 x 870

Sdect Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.4

266

ezGetSca eFactor = 0.6
Case "1024x768"
ezGetScaeFactor = 0.8
Case"1152x864", "1152x870"
ezGetScaleFactor = 1
Case "1280x1024"
ezGetScaeFactor = 1.1
Case "1600x1200"
ezGetScaeFactor = 1.4
End Sdect
End Sdect
If ezl argeFonts Then ezGetScal eFactor =
ezGetScaleFactor / 1.25
End Function
Public Function ezReSize(xForm As Form)
"This subroutine will resize the form based on it's current
dimensions
Dim ActiveForm As Object
Dim strTag As String
Dim SH AsSngle
Dim SW As Single

On Error GoTo errorHandler
Set ActiveForm = xForm

'If form in datasheet view then don't resize
If xForm.CurrentView <> 1 Then GoTo Done

'If the form is maximized then don't resize
If IsZoomed(xForm.hwnd) <> 0 Then GoTo Done

'If the form is minimized then don't resize
If 18l conic(xForm.hwnd) <> 0 Then GoTo Done

With ActiveForm
If .tag ="Sizing" Then GoTo Done
sirTag = .tag
tag ="9zng"
'Determine size of window and set resize based on
lowest proportion
SH = .WindowHeight / .Section(0).Height
SW = WindowWidth / .Width
If SH>SW Then
ezSizeForm xForm, SW
Else
ezSizeForm xForm, SH
End If
Width=0
On Error Resume Next
tag=strTag
End With
GoTo Done
errorHandler:
MsgBox ERR.Description
Done:

End Function

Public Function ezl argeFonts() As Boolean

"This function returnsatrueif large fonts are being used.
Dimhdc AsLong

Dim hwnd AsLong

Dim PrevMapMode AsLong
DimtmAsTEXTMETRIC

'Get the handle of the desktop window
hwnd = GetDesktopWindow()

'Get the device context for the desktop

hdc = GetWindowDC(hwnd)

If hdc Then 'Set the mapping mode to pixels
PrevMapMode = SetMapM ode(hdc, 1)
'Get the size of the system font
GetTextMetrics hdc, tm
'Set the mapping mode back to what it was
PrevMapMode = SetMapM ode(hdc, PrevMapMode)
'Rel ease the device context

267

ReleaseDC hwnd, hdc
'If the system font is more than 16 pixels high, then
large fonts are being used

If tm.tmHeight > 16 Then ezL argeFonts = True Else
ezl argeFonts = False
End If

End Function

MODUL E-Global Declaration

Option Compare Database
Option Explicit

MODULE DESCRIPTION

'ClassName: Global Declarations.bas
'Author: Pat Flanders & Scott Tufts

'‘Description: Contains al definitions for application global
'variables. Most of these are needed dueto theinability of
'VBA to pass parameters as part of a constructor.

'References. None

BB

'An object to represent the HFACs Connection file
Globa oHFACSConnection As HFACSConnection
'Reusable object variable for the HFACSConnection Class

'INI file declarations

Global gStrUID As String ‘The user ID

Globa gStrPWD As String 'The user password

Global gStrServerName As String 'The name of the MSDE
or SQL Server

Global gStrDatabasefFileName As String "The name of the
mdf

Global gStrDatabaseName As String ‘'The name of the
database

Global gStrAppPath As String ‘The application path

Globa gStrAutoLogon As String 'Toggle for satype login or
password

Global gStrFirstRun As String ‘Toggle for determining if this
isthe first time the program has been run.

Global gStrNTauth As String 'Toggle for determining if
NTAuth login should be attempted

Global gStrTypeDB As String 'The type of DB this program
will represent (mil, civ, or both).

268

'Security Settings
Global gBInAdministrator As Boolean

‘Value of the current connectionstring
Global gTheConnectionString As String

'Public Enums

Enum i Typel ogonConstants 'For logon prompts
PROMPT =1
NOPROMPT =2

End Enum

"The Operating System in use.
Globa gStrOSType As String

'Program wide variables

Global gFormNeedsRefresh As Boolean 'Reusable flag for
identifying when a calling form needs to be refreshed when it
next getsthe focus.

'‘Administration Variables

Global gLngMishapToGet As Long 'Reusable variable for
flagging arecord

Globa gBInAddAMishap As Boolean 'Flag to identify that a
new record was added

Global gStrDescription As String 'For viewing of long
mishap descriptions on the select form.

'Query Variables

Global gStrinputString As String 'Reusable variable for input
string argument passing

Global bUseHFACSSummaryQuery As Boolean 'Flag for 2-
0-1-2-frm-ViewMishaps form to toggle which recordsource
to use.

'Graph Variables

Global gStrXFieldToGraph As String ‘Name of X field for
Crosstab query under graph

Global gStrY FieldToGraph As String ‘Name of Y field for
Crosstab query under graph

APPENDIX G.

CONNECTION COMPONENT

CLASS-CallBackCls

Option Explicit

' CLASS DESCRIPTION

'ClassName: CallbackCls.cls

'‘Author: Pat Flanders & Scott Tufts

"Thisclass implements the cFTPCBK callback interface of
theHFACS

'FTP server. The methods of this class provide the means for
the

'HFACS server to notify (or callback) classinstancesfrom
this

‘component which utilize the FTP server functionality.
Basicaly,

'the members of this class provide a communication channel.

'‘ASIDE: The FTP server (HFACSFTP.exe) providesthe
functions needed

'to get FTP updates. These functions and their associated
classes

‘were removed from this component and compiled separately
inorder

'to work around the inability of Visual Basic to provide
support

'for freethreading. By placing the FTP functionalilty ina
'separately compiled executable, it can run init's own
process,

'which allows screen updates during long FTP downloads.

'References:
' - The HFACSFTP.exe ftp server.

'NOTE: See function headers for internal component
references.

Implements HFACSFTP.cFTPCBK ‘Implement interface

Tkkkkkhkkkkhkkkhkkhkhhkhhhkhhhkhkhhkhkhhhhhhhhhhhhhhkhhhhkhkxkx

' FUNCTIONS

Tkkkkkhkkkhkhkkhkkhkkhkkhkhkhkhhkhhhkhhhkhhhkhhhkhhhhhhhhhhdhkhhhhixkx

269

'Function/Sub Name: cFTPCBK_Complete()

'‘Description: An FTP update of the HFACs database
requiresthe

'download of 2 files(HFACS.mdf & HFACS log.Idf). This
function

‘accepts messages from the the FTP server and notifiesthe
‘frmFtpUpdate of progress. Specifically, of errorsin
download

‘and of successful download. If thefirst fileis downloaded
'sucessf ully (ErrCode = True And glntCounter = 1), then this
‘function notifies the frmFtpUpdate to begin the next
download.

'After successfully downloading both files, this function
closes

'thefrmFtpUpdate form.

'Input:

' ErrCode - Boolean valuereturned from FTP Server
indicating
' success or failure of afile download.

'‘Output: None

'References:

' - The HFACSFTP.exe ftp server.
' - frmFtpUpdate.frm

' - HFACSMain.bas

'##Model1d=3B294D27009C
Private Sub cFTPCBK_Complete(ErrCode As Boolean)

'‘Determine if the first file was downloaded successfully
If ErrCode = True And HFACSMain.gintCounter = 1
Then
frmFtpUpdate. GotFileDoNext
'‘Determine if the first file was downloaded successfully
Elself ErrCode = True And HFACSMain.gintCounter = 2
Then
frmFtpUpdate.GotFilelast
'Either we are done or there was an error, so close
frmFtpUpdate
Else
Unload frmFtpUpdate
End If

End Sub

CLASS-cErrorLog

Option Explicit

CLASS DESCRIPTION

'ClassName: cErrorLog.cls

'‘Author: Pat Flanders & Scott Tufts

"This writes stat us and error messages to the App.path
'‘ConnectionErrors.logfile.

'References. None

'NOTE: See function headers for internal component
references.

Tkkkkkhkkkhkkkhkkhkkhkhkkhkhhkhkhhkhhhkhhhkhhhhhhkhhhkhhhhhhkhhhhixkx

' PROPERTIES

Ykkkkkkkkhkkkkhkkkkhkkhkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkhkhkkhkhkkhkkkhkkkhkkkxkx

'Integer valuefor each entry
DimiErrorLog As Integer

Tkkkkhkhkhkhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhkkkkkk

' DEFAULT NO-ARGUMENT CONSTRUCTOR
(INITIALIZEEVENT)

TkhkAkKkhAK KA KKK KKK A IR A IR A I A I A A hhhkdhkhkhhkhkhkkhkhkkhkhkkkkx
Private Sub Class Initialize()
iErrorLog = FreeFile

End Sub

TRA AR A AR A IR A IR A IR A IR A ko khkhkh ok hkkhkhkhkhkhkhkkhkhkkkkx

' FUNCTIONS

Thkkkhkhkkkkhhhhhhkhhhhhhkhhhhhhkhkhhhkkhhhhhkkhkkkhkk

'Function/Sub Name: ErrorLog()

'‘Description: Open the afile called ConnectionErrLog.log in
the
‘application path and write error etriestoit.

'Input:

' strMsg - Message to writeto thefile
‘Output: None

'References:

' - HFACSMain.bas

Public Sub ErrorLog(strMsg As String)

Debug.Print strMsg

Open HFACSMain.gStrAppPath &
"ConnectionErrLog.log' For Append AsiErrorLog

Print #ErrorLog, Now() & " : " & strMsg

CloseiErrorLog

End Sub

:Function/Sub Name: ClearLog()

'Description: Clears the ConnectionErrLog.log.
:Input: None

'‘Output: None

'References:
' - HFACSMain.bas

Public Sub ClearLog()
Debug.Print "Error log cleared.”
Open HFACSMain.gStrAppPath &
"ConnectionErrLog.log" For Output AsiErrorLog
Print #iErrorLog, Now() & " : " & "Log Cleared"
CloseiErrorLog

End Sub

CLASS-HFACSConnection

Option Explicit

CLASS DESCRIPTION

'Class Name: HFACSConnection.cls

'Author: Pat Flanders & Scott Tufts

"This classisthe controller class for the entire component. It
isthe only class with public members accessible from
outside of the

‘component. Nothing can be manipulated without creating an
instance

‘of this class and using its methods to indirectly utilitze the
'functiondity of the other classes.

'References:

' - Microsoft Data Formating Object Library 6.0

' - Microsoft ActiveX DataObjects 2.5 Library

' - Microft SQLDMO Object Library

' - Microsoft Scripting Runtime

' - GIF89 1.0 (For animated Gl Fs on Forms)

' - The HFACSFTP.exe ftp server.

'NOTE: See function headers for internal component
references.

Ykkkkkhkkkkhkkkkhkkkkhkkkkhkkhkkkhkkhkkkhkkhkkhkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx

' PROPERTIES

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkkkhkkkkx

'Variable for type logon (prompted or not-prompted)
"##M odel | d=3B294CF6035C
Private iTypel ogon As iTypeLogonConstants

"Theuser ID
"##Model|d=3B294CF603D8
Private sUser As String

"The user password
"##Model |[d=3B294CF7003E
Private sPassword As String

"The name of the MSDE or SQL Server
"##M odel |[d=3B294CF7008C
Private sSvrName As String

"The name of the .mdf file containing the database.
"##Model | d=3B294CF700CB
Private sSMDFName As String

"The name of the database
"##Model|[d=3B294CF70119
Private SDBName As String

"The gpplication path
'##Model|[d=3B294CF70167
Private sinstDirectory As String

271

"Toggleto log on wi th/without prompt
'##Model|d=3B294CF701A5
Private sAutomaticLogon As String

"Togglefor determining if thisisthe first run after an update.
'##Model|d=3B294CF701F4
Private sFirstRunCheck As String

"Toggle for determining if NT authentication should be used
for

'logon attempts.

"##Model|[d=3B294CF70242

Private SNTAuth As String

"The type of DB this program will represent (mil, civ, or
both).

"##Model | d=3B294CF70290

Private sSTypeDB As String

'Variableto hold the value of the current connectionstring
"##Model | d=3B294CF702DE
Private sTheConnectionString As String

'"Enumerationsfor prompt/no-prompt functions
"##Model|[d=3B294CF60271
Public Enum i Typel ogonConstants
"##M odel | d=3B294CF6029F
PROMPT =1
'##Model1d=3B294CF602DE
NOPROMPT
End Enum

Tk kA h AR A AR A Ak hhk ko hkkhhkkhhkhkhkhkhkhkkhhkxhkhkhkhkkkkx

DEFAULT NO-ARGUMENT CONSTRUCTOR
(INITIALIZEEVENT)
Thkkkhkkhkhkhkhkhkhkhkhhhkhhhkhkhhkhhhhkhhhkkhhkhhkhkhkhkhhkhhhkhhhkhhxk
"##Model | d=3B294CF7031C

Private Sub Class Initialize()

'Set initial valuesfor al variables by reading them from
the

'HFACS.ni file.

MereadINIFile

sUser = HFACSMain.gStrUID

sPassword = HFACSMain.gStrPWD

sSvrName = HFACSMain.gStrServerName

sMDFName = HFACSMain.gStrDatabaserileName

sDBName = HFACSMain.gStrDatabaseName

sinstDirectory = HFACSMain.gStrAppPath

sAutomaticLogon = HFACSMain.gStrAutoL ogon

sFirsRunCheck = HFACSMain.gStriirstRun

SNTAuth = HFACSMain.gStrNTauth

sTypeDB = HFACSMain.gStrTypeDB

‘Calculate a connection string
sTheConnectionString =
HFACSMain.gTheConnectionString

'Clear the error log

Dim oTempClsErrorLog As New cErrorLog
oTempClsErrorLog.ClearLog

Set oTempClsErrorLog = Nothing

End Sub

TkhkkKk kAR A AR A AR A KK A Ik A Ik A I kA dhkhkhhkhkdhkhkdhkhkhhkhkhhkhkhkhkkkx

FUNCTIONS

TR AR A KK A KR A KR A AR A KA A IR A IR A I A Ak kA hkhkhkkhkhkkhkhkkkhkkkkkx

'Function/Sub Name: Init()

'‘Description: If aninstance of aclassis created using the
psuedo-

‘constructorsfrom the Constructors.bas module, this function
is

‘called to passinitial values, thereby mimicking the bahavior
of

‘aconstructor with arguments. Passed in valuesare all
required, but

'the Constructors.New_HFACSConnection() function
automatically sets

'passed-in valuesto global variable valuesif they areleft
‘blank.

'Input:

' sPassedinUser - Theuser ID

' sPassedinPassword - The user password

' sPassedinSvrName - The name of the MSDE or SQL
Server

' sPassediInMDFName
containing the

- The name of the .mdf file

database.

' sPassedinDBName - The name of the database

' sPassedIninstDirectory - Theapplication path

' sPassedInAutomaticLogon - Toggle to log on with/without
prompt

" sPassedInFirstRunCheck - Toggle for determining if this
isthe
' first run after an update.

' sPassedInNTAuUth - Toggle for determining if NT
Auth.
' should be used for logon attempts.

' sPassedinTypeDB - The type of DB this program will
' represent (mil, civ, or both).'

'‘Output: None

'References:
' - Congtructors.bas
' - HFACSMain.bas

'##Model|d=3B294CF7034B

Public Sub Init(sPassedinUser As String, sPassedlnPassword
As String, sPassedInSvrName As String,
SPassedlnMDFName As String, sPassedinDBName As
String, sPassedininstDirectory As String,

sPassedI nAutomaticLogon As String,
sPassedInFirstRunCheck As String,

SPassedI nFirstRunAfterUpdate As String, sPassedInTypeDB
As String)

sUser = sPassedinUser

sPassword = sPassedlnPassword
sSvrName = sPassedinSvrName
sMDFName = sPassedinMDFName

272

sDBName = sPassedinDBName
sinstDirectory = sPessedIninstDirectory
sAutomaticL ogon = sPassedInAutomaticL ogon
sFirstRunCheck = sPassedlnFirstRunCheck
sSNTAuth = sPassedInFirstRunAfterUpdate
STypeDB = sPassedInTypeDB

End Sub

'Function/Sub Name: doConnect()

'‘Description: This procedure will make a connectionto a
database

'server based on the value of i TypeLogonin. If this
parameter is

'left blank, the class determines the appropriate type of logon
'to perform. Thisfunction also detectsif it isthefirst time
'HFACS has been run and displays the frmWelcome.frm as
appropriate.

'After a successful logon, it setsthe .ini valueindicating a
firstrunto"F."

'Input:
" iTypeLogonin -Typeof logon to perform (prompted or
' not-prompted.

'Output: Logon success or failure.

'References:

' - frmODBLogon.frm
' - frmwWecome.frm

' - MSDE.cls

' - INIFileContraller.cls
' - Congtructors.bas

' - HFACSMain.bas

"##Model|[d=3B294CF8007D
Public Function doConnect(Optional iTypeLogonln As
iTypel ogonCongtants) As Boolean

On Error GoTo StartError
‘Check for optional arguments and assign to defaults as
needed.
If iTypeLogonin =0 Then
'A no-prompt logon can can only be made on the local
machine
‘and if no password is heeded.
If sSAutomaticLogon ="T" And sPassword ="" And _
sSvrName ="(loca)" Then
iTypel.ogon = NOPROMPT
Else
iTypelogon = PROMPT
If

Else

iTypeLogon = iTypeLogonin
End If

‘Variablesfor testing success or failure of various
operations

Dim bConstructorSuccess As Boolean

Dim bTestSuccess As Boolean

Select CaseiTypelogon

Tkkkkkhkkhkkhkkhkkhkkhkkhkhkhkhkhhkhhhkhhhkhhhkhhhkhhhhhhhhhkhhhkhdhhixkx

Case PROMPT 'Prompt logon

'If thisisafirst run, show the welcome form.

If HFACSMain.gStrFirstRun ="T" Then
frmwWelcome.Show 1

End If

frmODBLogon.Show 1 'Show the logon form

"Test for successful logon
If gblnPromptedL ogonSuccess = True Then _
doConnect = True Else doConnect = False

'If this was a successful first run reset the first

'run flag. This should never change again.

If gblnPromptedL ogonSuccess = True And _
HFACSMain.gStrFirstRun ="T" Then
gStrrirstRun ="F"

End If

Tkkkkkhkhkhkhhhhhhhhkhhhhhhkhhhhhhkhhhhhhhhhhhhhkkkkkk

Case NOPROMPT 'No Prompt logon

'Create an instance of MSDE
bConstructorSuccess =
ConstructorsNew_MSDE(sUser, _
SPassword, sSvrName, sSMDFName, sDBName,
sinstDirectory, sAutomaticL ogon,
sFirstRunCheck, _
sNTAuth, sTypeDB)

'Start the server and copy the database to it, if
'needed.
bTestSuccess = oM SDE.StartAndCopy

"Test for success

If bTestSuccess Then doConnect = True _
Else doConnect = False

Set oM SDE = Nothing

'If thiswas a successful first run reset the first
'run flag. This should never change again.
If bTestSuccess = True And
HFACSMain.gStrFirstRun _
="T" Then
gStrRirstRun ="F"
End If

Tkhk KKk h AR KKK KKK A KKK IR A IR A I A I kA d kA dhkhkhkkhkhkkhkhkkhkhkhkkx
Case Else ' Default to aan error message, something is
wrong.
MsgBox "Can't determine how to connect.” & _
" Contact your system administrator.”, _
vhCritical + vbOKOnly, "Error"
doConnect = False

TR A AR A AR A AR A AR A IR A IR A IR A IR A A h Ak khkhkhkhkhkhkkhkhkkkkkx

End Sdlect
ExitSub:

'Update the global connection string
createConnectionString

'If doConnect() was a success, save al the settings

‘and so the Access .adp has knows what transpired.

If doConnect = True Then
Constructors.New_INIFileController

273

olNIFileController.writelNlentries
Set ol NIFileController = Nothing
End If

Exit Function

StartError:
MsgBox "Error making a connection to HFACS." &
Chr(13) & _
Chr(13) & "The detailed error messageis. " & _
Err.Description & Chr(13) & Chr(13) & "Error Number:
"&
Err.Number
doConnect = False
Resume ExitSub
Resume Next
End Function

'Function/Sub Name: createConnectionString()

'Description: This procedure updates the value of

'the global variable for the connection string that will be used
for

‘al ADO connections (hfacsmain.gTheConnectionString). It
determines

'if the string should use NT authentication or regular SQL
'based on the globd variable gStrNTauth.

‘Input: None
'Output: success or failure of update.
'References:

' - Congtructors.bas
' - HFACSMain.bas

'##Model|d=3B294CF800BB
Private Function createConnectionString() As Boolean

On Error GoTo StartError
Screen.MousePointer = 11

'Determine which type of string to create
If HFACSMain.gStrNTauth = "T" Then
gTheConnectionString =
"PROVIDER=SQLOLEDB.L,INTEGRATED" & _
" SECURITY=SSPI;PERSIST SECURITY
INFO=FALSE;INITIAL CATALOG=" & _
gStrDatabaseName & ";DATA SOURCE=" &
gStrServerName
Else
gTheConnectionString =
"PROVIDER=SQLOLEDB.1;PASSWORD="& _
gStrPWD & ";PERSIST SECURITY
INFO=TRUE,USER ID=" & _
gStruID & *;INITIAL CATALOG=" &
gStrDatabaseName & _
";DATA SOURCE=" & gStrServerName
End If
Screen.MousePointer = 0
createConnectionString = True

ExitSub:
Exit Function

StartError:

Screen.MousePointer = 0
createConnectionString = False
Resume ExitSub

End Function

'Function/Sub Name: getUpdateFTP()

'‘Description: This function creates an instance of the
'UpdateController class, providing access to FTP updates.

'Input: None

'Output: success or failure of update.
'References:

' - Congtructors.bas

' - UpdateController.cls
' - HFACSMain.bas

"##Model | d=3B294CF800EA
Public Function getUpdateFTP() As Boolean

On Error GoTo StartError

'Open the FTP form by creating an UpdateController
object

Set HFACSMain.oUpdateController = New
UpdateController

getUpdateFTP =
HFACSMain.oUpdateController.getUpdate

ExitSub:
'Destroy it when done
Set HFA CSMain.oUpdateController = Nothing
Exit Function

StartError:
getUpdateFTP = False
Resume ExitSub

End Function

'Function/Sub Name: getUpdateDisk()

'Description: This function creates an in stance of the
'UpdateController class, providing access to update from disk
‘functionality.

‘Input: None

'‘Output: success or failure of update.
'References:

' - Congtructors.bas

' - UpdateController.cls
' - HFACSMain.bas

'##Model|[d=3B294CF80119
Public Function getUpdateDisk() As Boolean

On Error GoTo StartError

274

'Open the File Open didog by cresting an
UpdateController object

Set HFACSMain.oUpdateController = New
UpdateController

getUpdateDisk =
HFACSMain.oUpdateController.getUpdateDisk

ExitSub:
'Destroy it when done
Set HFACSMain.oUpdateController = Nothing
Exit Function

StartError:
getUpdateDisk = False
Resume ExitSub

End Function

'Function/Sub Name: writelNIFile()

'Description: Thisfunction creates an instance of the
'INIFileController class, providing methods to writeto the
HFACS.ini

file.

'Input: None

'Output: success or failure of write

'References:

' - Congtructors.bas

" - INIFileContraller.cls
' - HFACSMain.bas

"##Model |[d=3B294CF80138
Public Function writelNIFile() As Boolean

On Error GoTo StartError

'Open and write to HFACS.ini by creating an
UpdateController

‘object.

Set HFACSMain.olNIFileController = New
INIFileController

writelNIFile =
HFACSMain.olNIFileController.writel Nlentries

ExitSub:
'Destroy it when done
Set HFACSMain.olNIFileController = Nothing
Exit Function

StartError:
writelNIFile = Fase
Resume ExitSub

End Function

'Function/Sub Name: readINIFile()

'Description: Thisfunction creates an instance of the
'INIFileController class, providing methodsto read from the
HFACS.ini

file.

'Input: None
'Output: success or failure of read.

'References:

' - Congtructors.bas

' - INIFileContraller.cls
' - HFACSMain.bas

'###Model| d=3B294CF80167
Public Function readINIFile() As Boolean

On Error GoTo StartError

'Open and read HFACS.ini by creating an
UpdateController

‘object.

Set HFACSMain.olNIFileController = New
INIFileController

readINIFile=
HFACSMain.olNIFileController.readINlentries

ExitSub:
'Destroy it when done
Set HFACSMain.olNIFileController = Nothing
Exit Function

StartError:
readINIFile = Fase
Resume ExitSub

End Function

:Function/Sub Name: getSQL ServerPath()

:D&ecri ption: Thisfunction getsthe path to the SQL server.
:Input: None

:Output: String value of the SQL server.

'References:
' - HFACSMain.bas

'##Modelld=3B294CF80167
Public Function getSQL ServerPath() As String

getSQL ServerPath = HFACSMain.gSQL ServerPath

End Function

TR A AR A AR A AR A AR A IR A IR A IR A IR A A h Ak khkhkhkhkhkhkkhkhkkkkkx

" Public Property GET and LET statements follow

TRk Ak kA kA kA A A hh kA h kb h ko hk ko hkkhhkkhkhkkhkhkhkhhkhkxhkhkkrhkkx

'##Model|d=3B294CF801F4

Public Property Get User() As Variant
User = gStrUID

End Property

"##M odel | d=3B294CF80280

Public Property Get Password() As Variant

275

Password = gStrPWD

End Property

‘##Model|[d=3B294CF8031C

Public Property Get ServerName() As Variant
ServerName = gStrServerName

End Property

'##Model|d=3B294CF803A9

Public Property Get DatabaseFileName() As Variant
DatabaseFileName = gStrDatabaseFileName

End Property

"##M odel | d=3B294CF9005D

Public Property Get DatabaseName() As Variant
DatabaseName = gStrDatabaseName

End Property

"##Model | d=3B294CF900EA

Public Property Get AppPath() As Variant
AppPath = gStrAppPath

End Property

"##M odel | d=3B294CF90186

Public Property Get AutomaticLogon() As Variant
AutomaticL ogon = gStrAutoLogon

End Property

"##Model |[d=3B294CF90213

Public Property Get FirstRunCheck() As Variant
FirstRunCheck = gStrFirstRun

End Property

"#Model |[d=3B294CF902A F

Public Property Get UseNTAuth() As Variant
UseNTAuth = gStiNTauth

End Property

"##M odel|d=3B294CF9033C

Public Property Get TypeDatabase() As Variant
TypeDatabase = gStrTypeDB

End Property

'##Model | d=3B294CF9037A

Public Property Get ConnectionString() As Variant
ConnectionString = gTheConnectionString

End Property

'Property LET Statements
"##Model | d=3B294CF80196
Public Property Let User(ByVa vNewValue As Variant)
SUser = vNewVdue
HFACSMain.gSrrUID = vNewVaue
End Property
'##M odel |[d=3B294CF80222
Public Property Let Password(ByVa vNewVaue As
Variant)
sPassword = vNewVaue
HFACSMain.gStrPWD = vNewVaue
End Property
"##Model | d=3B294CF802BF
Public Property Let ServerName(ByVad vNewVaue As
Variant)
sSvrName = vNewVaue
HFACSMain.gStrServerName = vNewVaue
End Property
'##Model|d=3B294CF8034B
Public Property Let DatabaseFileName(ByVa vNewVaue
As Variant)
sMDFName = vNewVaue
HFACSMain.gStrDatabaseFileName = vNewValue
End Property
"##M odel | d=3B294CF90000
Public Property Let DatabaseName(ByVa vNewVaue As
Variant)
sDBName =vNewVaue
HFACSMain.gStrDatabaseName = vNewValue

End Property

"##M odel | d=3B294CF9008C

Public Property Let AppPath(ByVa vNewVaue As Variant)
singtDirectory = vNewVaue
HFACSMain.gStirAppPath = vNewVaue

End Property

"##Model |[d=3B294CF90128

Public Property Let AutomaticLogon(ByVa vNewVaue As

Variant)
sAutomaticLogon = vNewVaue
HFACSMain.gStrAutolL ogon = vNewValue

End Property

'##Model| d=3B294CF901B5

Public Property Let FirstRunCheck(ByVa vNewVaue As

Variant)

276

sFirstRunCheck = vNewVadue
HFACSMain.gStriirstRun = vNewVaue
End Property
"##Model | d=3B294CF90251
Public Property Let UseNTAuth(ByVa vNewVaue As
Variant)
SNTAuth = vNewVaue
HFACSMain.gSirNTauth = vNewValue
End Property
"##Model1d=3B294CF902DE
Public Property Le TypeDatabase(ByVa vNewVaue As
Variant)
STypeDB = vNewVaue
HFACSMain.gStrTypeDB = vNewVaue
End Property

CLASSINIFile

Option Explicit

CLASS DESCRIPTION

'ClassName: INIFile.cls

‘Author: Microsoft Corporation. Modified by Pat Flanders
&
' Scott Tufts

"This class creates .ini File objects used to create, delete, set,
‘and get valuesin a standard format Microsoft .ini file. It
uses

‘callsto the Windows AP for efficiency.

'References. Windows API

'NOTE: See function headers for internal component
references.

Tkkkkkkhhhhkhkhhhhkhhhhkhhhhhhhhhhhhhhhhhhkkkkkhhkhkk

' PROPERTIES

Tkkkkkhkkkkhkkhkkhkkhkkhkkhkhhkhkhhkhhhkhhhkhhhhhhkhhhkhhhkhdhkhhhhixkx

"The name of theiini fileto read
'#Model|d=3B294CFD03A9
Private msWbkName As String

‘APl Wrapper Code - provided by Microsoft

"##M odel|d=3B294CFE0000

Private Declare Function WritePrivateProfileString Lib
"kernel32" Alias"WritePrivateProfileStringA" (ByVa
IpApplicationName As String, ByVal IpKeyName As String,
ByVal IpString As String, ByVal IpFileName As String) As
Long

"##Model|d=3B294CFEQOAB

Private Declare Function GetPrivateProfileString Lib
"kernel32" Alias" GetPrivateProfileStringA" (ByVal
IpApplicationName As String, ByVal IpKeyName As Any,
ByVal IpDefault As String, ByVa IpReturnedString As
String, ByVad nSize AsLong, ByVal IpFileName As String)
AsLong

'##Model|[d=3B294CFE0196

Private Declare Function GetWindowsDirectory Lib
"kernel32" Alias"GetWindowsDirectoryA" (ByVal IpBuffer
As String, ByVal nSize AsLong) AsLong

TR AR A KK A AR A KR A AR A IR A IR A IR A I A A kA hkhkhkkhkhkkhkhkkhkhkkkkkx

FUNCTIONS

TRA A KA KK A AR A KR A AR A IR A IR A IR A IR A kA hkhkhkkhkhkkhkhkkkhkkkkkx

'Function/Sub Name: Init()

277

'‘Description: If aninstance of aclassis created using the
psuedo-

‘constructorsfrom the Constructors.bas module, thisfunction
is

'called to passinitial values, thereby mimicking the bahavior
of

‘aconstructor with arguments. Passed in valuesare all
required, but

'the Constructors.New_INIFile() function automatically sets
'passed-in valuesto globa variable valuesif they areleft
‘blank.

'Input:
' sPassedinWorkBookName
manipulate

- Name of the..ini fileto

‘Output: None

'References:
' - Congtructors.bas

'##Model|d=3B294CFE0213
Friend Sub Init(sPassedinWorkBookName As String)

msWhkName = sPassedInWorkBookName

End Sub

'Function/Sub Name: WriteTolniFile()

'‘Description: Write asection, key, and valueto an .ini file.

"I nput:

' drSection - Nameof asection

' drkey - Name of akey

' grVdue - Name of akey value

' drFileName - Name of thefileto manipulate

'Output: Success or failure

'References. None

'##Model | d=3B294CFE0251

Friend Function WriteTol niFile(strSection As String, strkey
As String, strVaue As String, strFileName As String) As
Boolean

' Passin name of section, key, key value, and file name.
If WritePrivateProf ileString(strSection, strkey, _
strVaue, striFileName) Then

WriteTolniFile = True

Else
MsgBox "Error writing to .ini file: " & Err.LastDIIError
WriteTolniFile = False

End If

End Function

'Function/Sub Name: Deletel ni Section()

'Description: Delete asection and al of its keysfrom an .ini
file.

'Input:

' drSection - Nameof asection

' grFileName - Nameof the file to manipulate

'Output: Success or failure

'References. None

"#Model|d=3B294CFEQ02DE
Friend Function Deletel ni Section(strSection As String,
srFileName As String) As Boolean

If WritePrivateProfileString(strSection, vbNullString, _
vbNullString, strFileName) Then
Deletel niSection = True
Else
MsgBox "Error deleting section from .ini file: " _
& Err.LastDIIError
Deletel niSection = False
End If

End Function

'Function/Sub Name: DeletelniKey()

'Description: Delete akey anditsvalue from an .ini file.

'Input:
' drSection - Nameof asection
' srkey - Name of akey

' grFileName - Name of thefileto manipulate
'Output: Success or failure

'References. None

"##Model |[d=3B294CFE033C
Friend Function Deletel niK ey(strSection As String, strkey
As String, strFileName As String) As Boolean

If WritePrivateProfileString(strSection, strkey, _
vbNullString, strFileName) Then
DeletelniKey = True
Else
MsgBox "Error deleting section from .ini file: " _
& Err.LastDIIError
DeletelniKey = False
End If

End Function

'Function/Sub Name: GetlniFileName()

'Description: Return namefor .ini file. Name includes name
of

‘workbook fileand ".ini". File path can be made the Windows
directory.

'by uncommenting the code below

‘Input: None

'Output: String path (e.g. C:\windows\HFACS.ini).

'References. None

'###Model|d=3B294CFE03A9
Friend Function GetlniFileName() As String

Dim strWinDir As String
DimIngLen AsLong

' Create null-terminated string to passto
' GetWindowsDirectory.
strwinDir = String$(255, vbNullChar)

IngLen = Len(strWinDir)

' Return Windows directory.
GetWindowsDirectory strWinDir, IngLen

' Truncate before first null character.
StrwinDir = Left(strWinDir, _
InStr(strWinDir, vbNullChar) - 1)

"Return .ini file name.
' GetlniFileName = strwWinDir & "\' & msWbkName &
"ini"
GetIniFileName = App.Path & "\" & maVbkName& ".ini"

End Function

'Function/Sub Name: ReadFrominiFile()

'‘Description: Read avalue from an .ini file, given thefile
name,
'section, key, and default valueto return if key is not found.

'Input:
' drSection - Name of asection
' srkey - Name of akey

" grDefault - Default name of akey vaue
' drFileName - Name of thefileto manipulate

'Output: Success or failure

'References. None

'##Model|0=3B294CFE03D8

Friend Function ReadFrominiFile(strFileName As String,
strSection As String, strKey As String, Optional strDefault
As String ="") As String

Dim strVaue As String

" Fill string buffer with null characters.
strVaue = String$(255, vbNullChar)

' Attempt to read value. GetPrivateProfileString
' function returns number of characters written
" into string.
If GetPrivateProfileString(strSection, strkey, _
strDefault, strVaue, Len(strValue),
strFileName) > 0 Then
" If characters have been written into string, parse string
"and return.

strValue = Left(strVaue, InStr(strValue, vbNullChar) - ReadFrominiFile = strDefault
1) End If
ReadFrominiFile = strVaue
Else End Function
' Otherwise, return a zero-length string.

279

CLASS-I NI FileController

Option Explicit

CLASS DESCRIPTION

'ClassName: INIFileController.cls

'Author: Pat Flanders & Scott Tufts

"This class creates instances of INIFile.cls used to create,
delete,
'set, and get values in a standard format Microsoft .ini file.

'References. None

'NOTE: See function headers for internal component
references.

Tkkkkkhkhkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkkkkk

' FUNCTIONS

Thkkkkkkhhhhhhkkhhhhhhkhhhhhhhkkhhhhhhhkkhhhhkkkkkk

'Function/Sub Name: Init()

'‘Description: If aninstance of aclassis created using the
psuedo-

‘constructors from the Constructors.bas module, thisfunction
is

'called to passinitial values, thereby mimicking the bahavior
of

‘aconstructor with arguments. Passed in valuesare all
required, but

'the Constructors.New_INIFileController() function
automatically sets

'passed-in valuesto global varigble valuesif they are left
‘blank.

'Input: None
'‘Output: None

'References. None

'##Model|[d=3B294D0OCO1A5
Friend Sub Init()

‘Do nothing. This function body is provided for future use.

End Sub

'Function/Sub Name: readINlentries()

'‘Description: Thisfunction creates an instance of the
'INIFile class and reads values from the HFACS.ini file.

'Input:

280

' sFileName - Thename of the.ini fileto read

'Output: success or failure of read.

'References:

' - Congtructors.bas
' - INIFilecls

' - HFACSMain.bas

"##Model|[d=3B294D0C01D4
Friend Function readINlentries(Optional sFileName As
String) As Boolean

'Set the MSDE class instance default values
If IsMissing(sFileName) Then sFileName =
gINIFILENAME

On Error GoTo StartError
Screen.MousePointer = 11
Debug.Print "Reading ini data.. . ."

'Create oINIFile
Congtructors.New_INIFile sFileName

' Get name for .ini filein the SY STEM directory
gStrFileName = olNIFile.GetlniFileName

' Read values from .ini file. Specify file name, section, and
key.
gStrUID = olNIFile ReadFrominiFile(gStrFileName, _

"CONNECTION","UID")

gStrPWD = ol NIFile.ReadFromIniFile(gStrFileName, _

"CONNECTION", "PWD")
gStrServerName =
olNIFile ReadFrominiFile(gStrFileName, _
"CONNECTION", "ServerName')
gStrDatabaseFileName =
olNIFile.ReadFromlIniFile(gStrFileName, _
"CONNECTION", "DatabasefileName")
gStrDatabaseName =
olNIFile ReadFrominiFile(gStrFileName, _
"CONNECTION", "DatabaseName")
gStrAppPath = olNIFile.ReadFrominiFile(gStrFileName,

"CONNECTION", "InstalIDir")
gStrAutoLogon =
olNIFile.ReadFrominiFile(gStrFileName, _
"CONNECTION", "AutoLogon")
gStrRirstRun = olNIFile. ReadFrominiFile(gStrFileName,

"CONNECTION", "FirstRun")

gStrNTauth = olNIFile ReadFromliniFile(gStriileName, _
"CONNECTION", "NTAuth")

gStrTypeDB = olNIFile.ReadFromIniFile(gStriileName, _
"DBTYPE", "DBtype")

Screen.MousePointer = 0
readINlentries= True

ExitSub:
Set olNIFile = Nothing
Exit Function

StartError:

Screen.MousePointer =0
readINlentries= False
Resume ExitSub

End Function

'Function/Sub Name: writel Nlentries()

'‘Description: This function creates an instance of the
'INIFile class and writes values to the HFACS.ini file.

'Input:

' sUser - Theuser ID

' sPassword - Theuser password

' sSvrName - The name of the MSDE or SQL Server

' sSMDFName - The name of the . mdf file containing the
' database.
' sDBName - The name of the database

' slnstDirectory - The application path

' sAutomaticLogon - Toggleto log on with/without prompt
' sFirsRunCheck - Togglefor determiningif thisisthe

' first run after an update.

' sNTAuth - Togglefor determining if NT Auth.

' should be used for logon attempts.

' sTypeDB - Thetype of DB this program will

' represent (mil, civ, or both).’

'Output: success or failure of write.

'References:

' - Congtructors.bas
" - INIFilecls

' - HFACSMain.bas

"##Model1d=3B294D0C0222

Friend Function writel Nlentries(Optional sUser As String,
Optional sPassword As String, Optional sSvrName As String,
Optional sSMDFName As String, Optional SDBName As
String, Optional sinstDirectory As String, Optional
sAutomaticLogon As String, Optional sFirstRunCheck As
String, Optional SNTAuth As String, Optiona sTypeDB As
String) As Boolean

On Error GoTo StartError
Screen.MousePointer = 11
Debug.Print "Writing ini data.. . ."

'Create oINIFile
Constructors.New_INIFile gINIFILENAME

'‘Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrName) ="" Then
sSvrName = gStrServerName

End If

If Trim(sUser) ="" Then
sUser = gStrUID

End If

If Trim(sPassword) ="" Then
SPassword = gStrPWD

End If

If Trim(sMDFName) ="" Then
sMDFName = gStrDatabasefileName

End If

If Trim(sDBName) ="" Then
sDBName = gStrDatabaseName

281

End If
If Trim(sInstDirectory) ="" Then
sinstDirectory = gStrAppPath

End If

If Trim(sAutomaticLogon) ="" Then
sAutomaticLogon = gStrAutoL ogon

End If

If Trim(sFirstRunCheck) ="" Then
sFirstRunCheck = gStrFirstRun

End If

If Trim(sNTAuth) ="" Then
SNTAuth = gStrNTauth

End If

If Trim(sTypeDB) ="" Then
sTypeDB = gStrTypeDB

End If

'Remove this block to allow updating of passwordsin the .ini
file
Thkkkhkkkhhkhkkhkhkhkhkhhkhkhhhkkhhhkhhhkhhhhhhhhhhhhhhkhhhhhhhhrxk
'If the user is using an account other than on the local
Server,
'then it will dways require a password.
'Passwords can't be storedin the clear (likein the .ini file),
'S0 never update them.

If sPassword = """ And sSvrName = "(local)" _
And sFirstRunCheck = "F" Then
sAutomaticLogon ="T"

Else
sAutomaticLogon ="F"

‘Update the value of the global variable for password
now.
gStrPWD = sPassword

‘Now set the local valueto "" so it doesn't get written
"intheini file"
sPassword =""

End If

Ykkkkkkkhkkkkkkhkkkkhkkhkkkhkhkhkkkhkhkkhkkhkhkhkkhkhkkhkkhkkkkkkkkkx

Dim writeSuccess As Boolean
'Write the new valuesto the .ini file
writeSuccess =
olNIFileWriteTolniFile(" CONNECTION", _
"UID", sUser, gStrFileName)
writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"PWD", sPassword, gStrFileName)
writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"ServerName", sSvrName, gStrFileName)
writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"DatabaseFileName", sSMDFName, gStrFileName)
writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"DatabaseName”, sDBName, gStriFileName)
writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"InstalIDir", sinstDirectory, gStrFileName)
writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"AutoLogon", sSAutomaticL ogon, gStriileName)

writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"FirstRun", sFirsRunCheck, gStrFileName)
writeSuccess =
olNIFileWriteTolniFile("CONNECTION", _
"NTAuth", SNTAuth, gStrFileName)
writeSuccess = ol NIFile WriteTolniFile("DBTYPE", _
"DBtype", sTypeDB, gStrFileName)

'Update global variables to the new values
gStrUID = sUser

%% Un-comment thisto allow updating of passwords
'inthe..ini file.
'gStrPWD = sPassword

gStrServerName = sSvrName
gStrDatabaserileName = sSMDFName
gStrDatabaseName = sDBName
gStrAppPeath = sinstDirectory

282

gStrAutolL ogon = sAutomaticL.ogon
gStrRirstRun = skirstRunCheck
gStrNTauth = SNTAuth
gStrTypeDB = sTypeDB

writelNlentries = True

ExitSub:
Set oINIFile = Nothing
Screen.MousePointer = 0
Exit Function

StartError:
Screen.MousePointer = 0
writelNlentries = False
Resume ExitSub

End Function

CLASS-MSDE

Option Explicit

CLASS DESCRIPTION

'Class Name: MSDE.cls

'Author: Pat Flanders & Scott Tufts

"Thisclassisresponsible for starting the MSDE or SQL
server, ensuring

'that the HFACS database is installed, and managing database
updates.

'References:

' - Microsoft Data Formating Object Library 6.0

' - Microsoft ActiveX DataObjects 2.5 Library

' - Microsoft SQLDMO Object Library

' - Microsoft Scripting Runtime

"NOTE: See function headers for internal component
references.

TRA A KA AR A KR A AR A IR A IR A IR A IR A I A A kA hkhkhkhkhkkhkhkkhkhkkkkkx

PROPERTIES

TR A A KA AR A AR A AR A IR A IR A IR A IR Ah A h kA hkhkhkhkhkhkhkhkhkkkkx

"Theuser ID
'##Model1d=3B8294D2201D4
Private sUser As String

"The user password
'#Model | d=3B294D220222
Private sPassword As String

"The name of the MSDE or SQL Server
'##Model|d=3B294D220261
Private sSvrName As String

‘The name of the .mdf file containing the database.
"##Model | d=3B294D22029F
Private SMDFName As String

"The name of the database
'##Model | d=3B294D2202EE
Private sSDBName As String

"The application path
"##Model|d=3B294D22032C
Private slnstDirectory As String

"Toggleto log on with/without prompt
'##Model|d=3B294D22037A
Private sAutomaticL ogon As String

"Togglefor determining if thisisthe first run after an update.
'##Model|d=3B294D2203B9
Private sFirstRunCheck As String

283

'Toggle for determining if NT authentication should be used
for

'logon attempts.

"##Model | d=3B294D23001F

Private SNTAuth As String

"The type of DB this program will represent (mil, civ, or
both).

"##M odel | d=3B294D23005D

Private sTypeDB As String

'Variable for writing to the errorlog
Private oClsErrorLog As cErrorLog

Ykkkkkkkkhkkkkhkkkkhkkkkhkkhkkhkkhkkkhkkhkkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkhkkkxkx

' DEFAULT NO-ARGUMENT CONSTRUCTOR
(INITIALIZEEVENT)

XA KK A AR A IR A IR A IR A I A Ak khhkhkhkhkhkhkhkkhkhkkkhkkkkx
"##Model |d=3B294D23009C

Privae Sub Class Initialize()

Set oClsErrorLog = New cErrorLog

sUser = gSruiD

sPassword = gStrPWD

sSvrName = gStrServerName
sMDFName = gStrDatabasefileName
sDBName = gStrDatabaseName
sinstDirectory = gStrAppPath
sAutomaticL ogon = gStrAutoLogon
skirstRunCheck = gStrFirstRun
SNTAuth = gStrNTauth

sTypeDB = gSirTypeDB

End Sub

Tkkkkkkhkkkhkkhkkhkhkkhkhkhkhkhhkhhhkhkhhkhhhkhhhhhhhhhhhhkhhhkhhhhkixkx

' FUNCTIONS

Tkkkkkkkhkkkhkkhkhkkkhkhkhhkkhhhkhhkkhkhhkhhkhkhhkkhhkhkhhkkhhhhhkkhhhkhhhk

'Function/Sub Name: Init()

'‘Description: If aninstance of aclassis created using the
psuedo-

‘constructors from the Constructors.bas module, this function
is

‘called to passinitial values, thereby mimicking the bahavior
of

‘aconstructor with arguments. Passed in valuesare all
required, but

'the Constructors.New_MSDE() function automatically sets
'passed-in valuesto global varigble valuesif they are left
‘blank.

'Input:
' sPassedinUser - Theuser ID
' sPassedInPassword - The user password

' sPassedInSvrName
SQL Server

' sPassedinMDFName
containing the

- The name of the MSDE or
- The name of the . mdf file

database.
- The name of the database
- The application path

- Toggletolog on

' sPassedinDBName
' sPassedIninstDirectory

' sPassedInAutomaticL ogon
with/without prompt

" sPassedInFirstRunCheck
thisisthe

- Toggle for determining if

first run after an update.

' sPassedInFirstRunAfterUpdate - Toggle for determining if
NT Auth.
' should be used for logon attempts.

' _sPassedInTypeDB - Thetype of DB this program
?NI” represent (mil, civ, or both).'

:Output: None

'References:

' - Congtructors.bas

' - HFACSMain.bas

'##Model|d=3B294D2300CB

Friend Sub Init(sPassedinUser As String, sPassedlnPassword
As String, sPassedinSvrName As String,

SPassedlnM DFName As String, sPassedinDBName As
String, sPassedininstDirectory As String,

sPassed| nAutomaticL ogon As String,

SPassedI nFirstRunCheck As String,

sPassed nFirstRunAfterUpdate As String, sPassedInTypeDB
As String)

sUser = sPassedinUser

sPassword = sPassedInPassword

sSvrName = sPassedinSvrName

sMDFName = sPassedinMDFName

sDBName = sPassedinDBName
sinstDirectory = sPassedIninstDirectory
sAutomaticLogon = sPassedInAutomaticL ogon
sFirstRunCheck = sPassedl nFirstRunCheck
sNTAuth = sPassedInFirstRunAfterUpdate
sTypeDB = sPassedInTypeDB

End Sub

'Function/Sub Name: startM SDE()

'‘Description: This procedure will start an instance SQL
Server and

'creste a connection to it, thereby verifying that the specified
'server existsand that it is started. If the server isalready
running,

'the error trap will exit the procedure and leave the server
running.

'A bug in SQL Server 2000 prevents SQLDMO from starting
aremote server

'so this code al so detects the error and switchesto an ADO
type

‘connection to verify that the HFACS database is present on
theremote

'machine. In the case of the ADO connection, acopy the
database

284

‘either exists or doesn't exist on the remote server. If the
ADO

‘connection fails, aglobal flag is set so that all classes

'in the component know NOT to try to copy an instance of
the database

'to the remote server, which would generate another error.

'Input:

' sSvrNameln The server to be started

' sUsarln Theuser ID with which to start the server
' sPasswordln The user password

‘Output: Success or Failure

'References:
' - Congtructors.bes
' - HFACSMain.bas

'##Model1d=3B8294D2301D4

Friend Function startM SDE(Optional sSvrNameln As String,
Optional sUserln As String, Optional sPasswordin As String)
AsBoolean

Screen.MousePointer = 11
On Error GoTo StartError

‘Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrNameln) <>"" Then
sSvrName = sSvrNameln

End If

If Trim(sUserIn) <>"" Then
SUser = sUserln

End If

If Trim(sPasswordIn) <>"" Then
SPassword = sPasswordln

End If

Dim iSlowServerCounter As Integer
iSlowServerCounter = 1

'Only use SQLDMO for local machine operations
Dim iADOAttemptCounter As Integer
iADOA ttemptCounter = 0
If Trim(sSvrName) <> "(local)" Then
Err.Raise -2147221163
End If

'Declare an object for SQL server manipulation
Dim osvr As sqldmo.SQL Server

'Create the SQLDMO Server Object.
Set osvr = CreateObject("SQLDMO.sglserver™)

osvr.LoginTimeout = 20
‘Start Server.

'Reset the no copy needed variable to false every time
‘connection is attempted.
gblnNoCopyNeeded = False

TimeoutResume:
'Determine connection type
If SNTAuth="T" Then
osvr.LoginSecure = True
End If
oClsErrorLog.ErrorLog "startM SDE-Attempting to start
server. . ."

osvr.Start True, sSvrName, sUser, sPassword
oClsErrorLog.ErrorLog "startM SDE-The server was
successfully started . . ."

StartConnect:
oClsErrorLog.ErrorLog "startM SDE-Attempting to
connect .. ."
'Attempt a connection.

'If nologin name, use NT Integrated security in an attempt.

'to connect.

If SNTAuth="T" Then
osvr.LoginSecure = True

End If

‘Thisisthe actua connection attempt.

osvr.Connect sSvrName, sUser, sPassword
oClsErrorLog.ErrorLog "startM SDE-Connected . . ."

'Set the SQL Server path variable
HFACSMain.gSQL ServerPath =
osvr.Databases("master").PrimaryFilePath

SartMSDE = True

ExitSub:
On Error GoTo 0
On Error Resume Next
osvr.DisConnect
Set osvr = Nothing
Screen.MousePointer = 0
Exit Function

StartError:
Screen.MousePointer = 0
If Err.Number = -2147023840 Then
‘This error occurs when the server is aready running,
‘and Server.Start is executed on NT.
oClsErrorLog.ErrorLog "startM SDE-The server is
dready started . . "
Resume StartConnect
Elself Err.Number = -2147201024 Then
‘This error occurs when server is already started and
connected.
oClsErrorLog.ErrorLog "startM SDE-The server is
aready connected . . ."
Resume Next
Elself Err.Number = -2147023174 Then
‘This error occurs when the server cannot be found.
oClsErrorLog.ErrorLog "startM SDE-The server could
not befound . . ."
MsgBox "Can't find server " & sSvrName & ".",
vbCritical, _
""Connection Failed"
startM SDE = False
Resume ExitSub
Elself Err.Number = -2147203048 Then

If iSlowServerCounter < 2 Then
'Pause for 5 seconds while the server really restarts
HFACSMain.gStrTextMessage = "A dow server was

detected. Giving extratime. . ."

HFACSMain.gIntTimeToWait = 10
frmWait.Show 1
DoEvents 'Redraw screen
iSlowServerCounter = iSlowServerCounter + 1
Resume TimeoutResume:

End If

285

"This error occurs when the password or user ID is
wrong

oClsErrorLog.ErrorLog "startM SDE-Incorrect password
oruser ID. . ."

MsgBox "Invalid User ID or Password.", vbCritical, _

"Connection Failed"
startMSDE = False
Resume ExitSub
Elself Err.Number = -2147221504 T hen

'Logon timeout occured

oClsErrorLog.ErrorLog "startM SDE-A harmlessLogin
timeout occurred . . ."

Resume Next

Elself Err.Number = -2147200991 Then

‘This error occurs when replacing the database from a
file. Itis

‘caused because a current connection exists and NT
authentication is

'being attempted to stop the server.

oClsErrorLog.ErrorLog "startM SDE-A harmless lost
connection error occurred . . ."

Resume Next

'Or -2147023174

Elself Err.Number = -2147221163 Or -2147024891 Then
"This error occurs when attempting to log onto server
other thanthe
'local machine using SQLDMO.sqlserver. To work
around this switch
'to an ADO type connection.

oClsErrorLog.ErrorLog "SQLDMO connection failed.
Trying ADO. . ."

iADOAttemptCounter = iADOAttemptCounter + 1

Try ADO 10 times, then give up

If iIADOAttemptCounter = 10 Then
MsgBox "Tried 10 times"
GoTo FailedADO

End If

Dim oRemoteConnection As ADODB.Connection
Set oRemoteConnection = New ADODB.Connection
On Error GoTo FailedADO

If SNTAuth ="T" Then
oRemoteConnection.ConnectionString = _
"PROVIDER=SQLOLEDB.1,INTEGRATED
SECURITY=SSPI;" & _
"PERSIST SECURITY=FALSE;INITIAL
CATALOG="& _
sDBName & ";DATA SOURCE=" & sSvrName
'& ";Network Library=dbmssocn"
Else
oRemoteConnection.ConnectionString = _
"PROVIDER=SQLOLEDB.1;PASSWORD=" _
& sPassword & ";PERSIST SECURITY
INFO=TRUE;USER ID="& _
sUser & ";INITIAL CATALOG=" & sDBName _
& ";DATA SOURCE=" & sSvrName'&
";Network Library=dbmssocn"
End If

'Open the connection
oRemoteConnection.Open
oRemoteConnection.Close

'‘Destroy the connection since you verified it works
Set oRemoteConnection = Nothing

'If this connection exists, then the HFACS database
exists

‘on the remote machine and no copy is needed, so set the

‘global flag to true.

gblnNoCopyNeeded = True

startMSDE = True
Resume ExitSub
Else 'Unknown error

FailedADO:

oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number

MsgBox "Destination host unreachable. The server may
not " &

"be started or you may haveto build a System DSN." &
Chr(13) & Chr(13) & _

"The detailed error messageis. MSDE -" &
Err.Description & _

Chr(13) & Chr(13) & "Error Number: " & Err.Number,

vbOKOnly + vbCritical, "Connection Failed"
gartMSDE = False

End If

Resume ExitSub

End Function

'Function/Sub Name: copyMDF()

'‘Description: This procedure will check for the database on a
local

'Server. If the database does not exist, it will then copy and
install

'the HFA CS database from the application path to the Server
data

'directory making a backup copy of the old database in case
anerror

‘occurs and arestore is neeeded.

"The last two copies of the database are kept in the server data
'directory in an attempt to prevent dataloss.

'Input:

' bPerformCopy - Toggle to actualy perform a copy or just
seeif
' oneis needed

' sSvrNameln - The server to start

' sUserln - Theuser ID with which to & art the server
' sPasswordln - The user password

' sMDFNameln - The name of the M SDE Databaseto be
copied
' sDBNameln - The name of the database

'‘Output: Success or Failure

'References:
' - Congtructors.bas
' - HFACSMain.bas

"##Model | d=3B294D230242
Friend Function copyM DF(Optiona bPerformCopy As
Boolean = True, Optiona sSvrNameln As String, Optional

286

sUserln As String, Optional sPasswordin As String, Optiona
sMDFNameln As String, Optiona sDBNameln As String)
AsBoolean

Screen.MousePointer = 11

On Error GoTo StartError

Debug.Print

oClsErrorLog.ErrorLog "copyM DF-Copy routineinitiated

B 6CI sErrorLog.ErrorLog "copyM DF-Cresting new
SQLDMO object . . ."

‘Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrNameln) <>"" Then
sSvrName = sSvrNameln

End If

If Trim(sUserln) <>"" Then
sUser = sUserin

End If

If Trim(sPasswordIn) <>"" Then
sPassword = sPasswordin

End If

If Trim(sMDFNameln) <>"* Then
sMDFName = sSMDFNameln

End If

If Trim(sDBNameln) <>"" Then
sDBName = sDBNameln

End If

'Declare an object for hard disk file manipulation
Dim FSO As Scripting.FileSystemObject

'Declare an abject for SQL server manipulation
Dim osvr As sqldmo.SQL Server

'‘Declare avariable to hold the return value from the
‘attachDB call
Dim strMessage As String

'For looping through databeses on the server
Dim db As Database

'‘Declare an flag for determining if the database was
'found on the server
Dim fDataBaseFlag As Boolean

‘The drive names used in FSO.Copyfile and
oSvr.AttachDB

‘need to match the locations for Program Filesand MSDE
onthe

'user's machine.

'Initialize variables

Set FSO = CreateObject(" Scripting.FileSystemObject")
Set osvr = CreateObject("sgldmo.sglserver™)
fDataBaseFlag = False

'Attempt a connection.
oClsErrorLog.ErrorLog "copyMDFAttempting to
connect . . ."
'If no login name, use NT Integrated security in an attempt.
'to connect.
If SNTAuth="T" Then
osvr.LoginSecure = True
End If

osvr.Connect sSvrName, sUser, sPassword

'Check for database on local MSDE Server
'by looping through all database names on the local MSDE
Server.
For Each db In osvr.Databases
If db.Name = sDBName Then 'The database exists.
oClsErrorLog.ErrorLog "copyM DFThe database
exists-" & _
"No copy will be performed .. ."
fDataBaseFlag = True
CcopyMDF = True
Exit For 'Get out of loop.
End If
Next

If fDataBaseFlag = False Then 'There is no database name
match.

'Check to make sure the operation is being attempted on
‘alocal server.
If sSvrName <> "(local)" Then

oClsErrorLog.ErrorLog "copyMDF Failed check. "

"Can 't perform operéion on remote server . . ."
Screen.MousePointer = 0
MsgBox "The server you are trying to connect to
exists," & _
" but it is not the local machine or you have not " &

"logged on as'(local)’. You beloggedonto” & _
"server '(local)' to perform this operation." & _
Chr(13) & Chr(13) & "This program cannot create
a" &
"database on amachine other than the local
machine.", _
vbCritical, "Connection Failed"
Screen.MousePointer = 11
copyMDF = False
GoTo ExitSub
End If
oClsErrorLog.ErrorLog "copyMDFLoca machineis
the SQL server." &
" Continuing . . ."

'Copy fileto datafolder.
If bPerformCopy = True Then
oClsErrorLog.ErrorLog "copyMDRThe HFACS
database was not found . . ."

'We already ascertained that the db does not exi<t,
'but the program can't overwrite the .mdf or _log.Idf
filesif they exist, 0 if they exist, rename them

'a&s BKP-1 and BKP-2, respectively. Permanently
'delete any existing copy of aBKP-2file.

Turn off error checking for the disk manipulation

On Error GoTo 0

On Error Resume Next

FSO.CopyFile
osvr.Databases("master”).PrimaryFilePath & _

"BKP-1-" & sMDFName,
osvr.Databases("master”).PrimaryFilePath & _

"BKP-2-" & sMDFName, True

FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _

SMDFName,
osvr.Databases("master").PrimaryFilePath & _

"BKP-1-" & sSMDFName, True

FSO.CopyFile
osvr.Databases("master”).PrimaryFilePath & _

"BKP-1-" & Left(sMDFName, (Len(sMDFName) -
4)) & "_log.ldf", _

osvr.Databases("master").PrimaryFilePath & "BKP-
2" &

Left(sMDFName, (Len(SMDFName) - 4)) &
" log.ldf", True

FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _

Left(sSMDFName, (Len(SMDFName) - 4)) &
"_log.ldf", _

osvr.Databases("master).PrimaryFilePath & "BKP-
1 &

Left(sSMDFName, (Len(SMDFName) - 4)) &
" log.ldf", True

FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _

SMDFName, True

FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _

Left(sMDFName, (Len(SMDFName) - 4)) &
" log.ldf", True

'Now it's safe to copy the database from the
gpplication
‘path to the server directory. Database updates (from
both
'ftp and disks, are awaysfirst placed (copied or
downloaded)
'into the application path - then they are copied to the
‘server data directory by thisfunction.
FSO.CopyFile sinstDirectory & sMDFName, _
osvr.Databases("master").PrimaryFilePath &
sMDFName, True
FSO.CopyFile sinstDirectory & Left(sMDFName,
(Len(SMDFName) - 4)) _
& " _log.ldf",
osvr.Databases("master").PrimaryFilePath _
& Left(SMDFName, (Len(sSMDFName) - 4)) &
"_log.ldf", True
oClsErrorLog.ErrorLog "copyMDF Function call
specified acopy was' & _
" to be performed. . ."
oClsErrorLog.ErrorLog "copyMDFCopying " &
sDBName& " from" & _
sinstDirectory & sSMDFName & "to" & _
osvr.Databases("master").PrimaryFilePath & _
sMDFName & " ..."

'Attach the new .mdf file to the server.

On Error GoTo 0

On Error GoTo StartError

strMessage = osvr.AttachDB(sDBName, "[" & _
osvr.Databases("'master").PrimaryFilePath & _
SMDFName & "]")

oClsErrorLog.ErrorLog "copyMDFR" & strMessage

‘Thisisa CRITICAL step that catches afailure to
dtach
‘anew file.
If Me.databaseExists = True Then
copyMDF = True
Else
copyMDF = Fase
End If

Else

copyMDF = True
oClsErrorLog.ErrorLog "copyMDFFunction call
specified not to copy" & _
" the database. Ending. . ."
End If
End If

ExitSub:

'Cleanup

osvr.DisConnect

oClsErrorLog.ErrorLog "copyM DF-Destroying theobjects
created" & _

" for copying hfacsmdf . . ."

Set osvr = Nothing

Set FSO = Nothing

Screen.MousePointe = 0
Exit Function

StartError:
Screen.MousePointer = 0
If Err.Number = -2147203048 Then
‘This error occurs when the password or user ID is
wrong
oClsErrorLog.ErrorLog "copyM DFIncorrect
password or user ID. . ."
MsgBox "Invalid User ID or Password.", vbCritical, _
"Connection Failed"
copyMDF = Fase
Resume ExitSub
End If
If Err.Number = -2147221504 Then
"This error occurs when the user tries to connect a
'SQL 2K filetoaSQL 7.0 compatible engine.
oClsErrorLog.ErrorLog "copyMDF - Thisisa SQL
2K compatiblefile. . ."
MsgBox "Thefileyou aretrying to attach isin SQL" &

" 2000 format. The database engine on this machineis’
&
" configured for SQL 7.0.", vbCritical, "Connection
Failed"
copyMDF = False
Resume ExitSub
End If
'Unknown error
oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
MsgBox "Error copying database." & Chr(13) & Chr(13)
&
"The detailed error messageis. " & Err.Description & _
Chr(13) & Chr(13) & "Error Number: " & Err.Number, _
vbOKOnly + vbCritical, "Copy Failed"
copyMDF = False
Resume ExitSub

End Function

'Function/Sub Name: dropDB()

'Description: This procedure will check for the database on
the

'Server. If the database exists it will then permanently drop it.
'A normal drop specifies the bKillDBFiles paramater as
Fase, 0

'A backup of the database is created before dropping it.

'Passing avalue of true for this parameter drops the database
with
'no backup.

'Input:

' bKillDBFiles - Toggle to drop the database without
backing-up

' sSvrNameln - Theserve to sart

' sUserln - Theuser ID with which to start the server

' sPasswordln - The user password

' sMDFNameln - The name of the M SDE Database to be
copied

' sDBNameln - The name of the database

'‘Output: Success or Failure

'References:
' - Condtructors.bas
' - HFACSMain.bas

"##Model |d=3B294D2302FD

Friend Function dropDB(Optiona bKillDBFiles As Boolean
= False, Optional sSvrNameln As String, Optional sUserIn
As String, Optional sPasswordin As String, Optional
sMDFNameln As String, Optional sSDBNameln As String)
As Boolean

Screen.MousePointer = 11
On Error GoTo StartError
Debug.Print
oClsErrorLog.ErrorLog "dropDB-Drop routine was
initiated . . ."
oCl<ErrorLog.ErrorLog "dropDB-Cresting new
SQLDMO object . . ."

'Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrNameln) <>"" Then
sSvrName = sSvrNameln

End If

If Trim(sUserIn) <>"" Then
sUser = sUserin

End If

If Trim(sPasswordIn) <>"" Then
SPassword = sPasswordln

End If

If Trim(sSMDFNameln) <>"" Then
sMDFName = sSMDFNameln

End If

If Trim(sDBNameln) <>"" Then
sDBName = sDBNameln

End If

'Declare an object for hard disk file manipulation
Dim FSO As Scripting.FileSystemObject

'Declare an object for SQL server manipulation
Dim osvr As sgldmo.SQL Server

'‘Declare avariable to hold the return value from the
‘drop call
Dim strMessage As String

'For looping through databases on the server
Dim db As Variant

'Declare an flag for determining if the database
‘was found on the server

Dim fDataBaseFlag As Boolean

'Initialize variades

Set FSO = CreateObject(" Scripting.FileSystemObject")
Set osvr = CreateObject("sgldmo.sqlserver”)
fDataBaseFlag = False

'Attempt a connection.
oClsErrorLog.ErrorL og "dropDB-Attempting to connect . .

'If no login name, use NT Integrated security in an attempt.
'to connect.
If SNTAuth="T" Then
osvr.LoginSecure = True
End If
osvr.Connect sSvrName, sUser, sPassword

‘Check to make sure the operation is being attempted on
‘alocal server.
If sSvrName <> "(local)" Then
dropDB = False
oClsErrorLog.ErrorLog "dropDB-Failed check. Can't
perform" & _
"operation on remote server . . ."
Screen.MousePointer = 0
MsgBox "The server you are trying to connect to
exists," & _
" but it is not the local machine or you have not
logged" & _
"onas'(locd)'. Youbelogged on to server ‘(local)™
&

" to perform this operation." & Chr(13) & Chr(13) & _

"This program cannot create a database on a machine
other" & _
" than thelocal machine.", vbCritical + vbOKOnly, _
"Connection Failed"
Screen.MousePointer = 11
GoTo ExitSub
End If

oClsErrorLog.ErrorLog "dropDB-Loca machineisthe
SQL server. Continuing . . ."

'Check for database on local MSDE Server
'by looping through all database names on the local MSDE
Server.
For Each db In osvr.Databases
If db.Name = sDBName Then 'The database exists.
oClsErrorLog.ErrorLog "dropDB-The database exists
ontheserver..."
fDataBaseFlag = True
Exit For 'Get out of |loop.
End If
Next

If fDataBaseFlag = True Then 'There is a database name

match.

‘drop the database.

oClsErrorLog.ErrorLog "dropDB-The HFACS database
wasfound..."

oClsErrorLog.ErrorLog "dropDB-Dropping " &
sDBName & " from" & _

sSvrName & " .. ."
strMessage = osvr.DetachDB(SDBName, True)

'Print any error messages from the server

oClsErrorLog.ErrorLog "dropDB-" & strMessage

‘NOTE: Uncomment this to see the SQL drop server
messages
‘MsgBox strMessage

'Check to make suret he drop was successful.

If Me.databaseExists = True Then
Screen.MousePointer = vbDefault
MsgBox "There was an error dropping the existing"”

&
" database file from the database." & Chr(13) & _
Chr(13) & "The new filewill not beinstalled.”, _
vbExclamation + vbOK Only, "Database Drop
Failed"
dropDB = Fase
GoTo ExitSub
End If

Turn off error checking for the disk manipulation
On Error GoTo 0
On Error Resume Next
If bKilIDBFiles = True Then
"The user specified to physically delete the .mdf files
‘from the server with no backup.
oClsErrorLog.ErrorLog "dropDB-Deletion of files
wasrequested as' & _
"well. Deetingfiles. . ."
FSO.DeeteFile
osvr.Databases("master”).PrimaryFilePath & _
sMDFName, True
FSO.DeeteFile
osvr.Databases("master").PrimaryFilePath & _
Left(sMDFName, (Len(SMDFName) - 4)) &
"_log.ldf", True
dropDB = True
Else
"*** NOTE: Thisfunctionality is turned off because
the copy
‘routine accomplishes the backing of files, but this
codeis
'left here for reuse purposes. Just uncomment to use
this
‘funtionality.

'Otherwise rename the old ones
'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
"BKP-1-" & sMDFName,
osvr.Databases('master").PrimaryFilePath _
'& "BKP-2-" & sMDFName, True
'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
'SMDFName,
osvr.Databases("master").PrimaryFilePath & _
"BKP-1-" & sMDFName, True
'FSO.CopyFile
osvr.Databases("master”).PrimaryFilePath & _
"BKP-1-" & Left(sMDFName, (Len(sM DFName)
-4 & _
" _log.ldf",
osvr.Databases("master").PrimaryFilePath & _
"BKP-2-" & Left(sMDFName, (Len(sM DFName)
-4 & _
"_log.ldf", True
'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _

289

'Left(SMDFName, (Len(SMDFName) - 4)) &
"_log.ldf", _
‘osvr.Databases("master”).PrimaryFilePath &
"BKP-1-" & _
'Left(SMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
'FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
'SMDFName, True
'FSO.Deleterile
osvr.Databases("master").PrimaryFilePath & _
'Left(SMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
dropDB = True
End If
On Error GoTo 0
On Error GoTo StartError

Else

oClsErrorLog.ErrorLog "dropDB-The HFACS database
wasnot found, so" & _
"no drop isnecessary . . ."
"Turn off error checking for the disk manipulation
On Error GoTo 0
On Error Resume Next
If bKillIDBFiles= True Then
'Physically delete the .mdf files from the server
oClsErrorLog.ErrorLog "dropDB-Deletion of files
was requested, however." & _
" Deletingfiles. . ."
FSO.DeeteFile
osvr.Databases("master").PrimaryFilePath & _
SMDFName, True
FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
Left(sMDFName, (Len(SMDFName) - 4)) &
" log.ldf", True
Else
"*** NOTE: Thisfunctionality isturned off because
the copy routine
‘accomplishes the backing of files, but this code isleft
here for
‘reuse purposes. Just uncomment to use this
funtiondlity.

'Otherwise rename the old ones
'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
"BKP-1-" & sSMDFName,
osvr.Databases('master").PrimaryFilePath _
'& "BKP-2-" & sMDFName, True
'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
'sMDFName,
osvr.Databases("master").PrimaryFilePath & _
"BKP-1-" & sMDFName, True
'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _
"BKP-1-" & Left(SMDFName, (Len(sMDFName) -
4)&_
"_log.ldf",
osvr.Databases("master").PimaryFilePath & _
"BKP-2-" & Left(SMDFName, (Len(sMDFName) -
)& _
" log.ldf", True
'FSO.CopyFile
osvr.Databases("master").PrimaryFilePath & _

290

'Left(SMDFName, (Len(SMDFName) - 4)) &
"_log.ldf", _
‘osvr.Databases("master").PrimaryFilePath &
"BKP-1-" & _
‘Left(SMDFName, (Len(sMDFName) - 4)) &
"_log.ldf", True
'FSO.DeleteFile
osvr.Databases("master").PrimaryFilePath & _
'SMDFName, True
'FSO.DeleteFile
osvr.Databases("master”).PrimaryFilePath & _
'Left(SMDFName, (Len(SMDFName) - 4)) &
"_log.ldf", True
End If
On Error GoTo 0
On Error GoTo StartError
dropDB = True
End If

ExitSub:

osvr.DisConnect

oClsErrorLog.ErrorL og "dropDB-Destroying the objects
created for dropping” & _

" the database . . ."

Set osvr = Nothing

Set FSO = Nothing

Screen.MousePointer = 0
Exit Function

StartError:
Screen.MousePointer =0
If Err.Number = -2147203048 Then
‘This error occurs when the password or user ID is
wrong
oClsErrorLog.ErrorLog "dropDB-Incorrect password
oruserID. . ."
MsgBox "Invalid User ID or Password.", vbCritical, _
"Connection Failed"
dropDB = False
Resume ExitSub
End If
‘Unknown Error
oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
MsgBox "Error dropping database." & Chr(13) & Chr(13)
&
"The detailed error messageis. " & Err.Description &
Chr(13) _
& Chr(13) & "Error Number: " & Err.Number, _
vbOKOnly + vbCriticd, "Database Drop Failed"
dropDB = Fdse
Resume ExitSub

End Function

'Function/Sub Name: databaseExisty()

'Description: This procedure will connect to a SQL server
that is
‘aready running and determine if a database exists.

'Input:
' sSvrNameln - Theserver to sart
' sUserln - Theuser ID with which to start the server

' sPasswordln - The user password

' sMDFNameln - The name of the MSDE Database to be
copied
' sDBNameln - The name of the database

'‘Output: Success or Failure

'References:
' - Congtructors.bas
' - HFACSMain.bas

'##Modelld=3B294D2303A9

Friend Function databaseExists(Optional sSvrNameln As
String, Optional sUserln As String, Optiona sPasswordin As
String, Optional sSMDFNameln As String, Optional
sDBNameln As String) As Boolean

Screen.MousePointer = 11
On Error GoTo StartError
Debug.Print
oClsErrorLog.ErrorLog "databaseExists Connect
routine was initiated . . ."
oClsErrorLog.ErrorLog "databaseExists Creating new
SQLDMOoobject .. ."

'‘Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrNameln) <>"" Then
sSvrName = sSvrNameln

End If

If Trim(sUserIn) <>"" Then
sUser = sUsarin

End If

If Trim(sPasswordin) <>"" Then
SPassword = sPasswordln

End If

If Trim(sMDFNameln) <>"" Then
SMDFName = sMDFNameln

End If

If Trim(sDBNameln) <>"" Then
sDBName = sDBNameln

End If

'Declare an object for SQL server manipulation
Dim osvr As sqldmo.SQL Server

'For looping through databases on the server
Dim db As Variant

'‘Declare an flag for determining if the database was found
on

'the server

Dim fDataBaseFlag As Boolean

'Initidlize variables
Set osvr = CreateObject("SQLDMO.sglserver™)
fDataBaseFlag = False

‘Attempt a connection.

oClsErrorLog.ErrorLog " databaseExistsAttempting to
connect . . ."

'If nologin name, use NT Integrated security in an attempt.

'to connect.

If SNTAuth="T" Then

osvr.LoginSecure = True
End If
osvr.Connect sSvrName, sUser, sPassword

'Check for database on Server

291

'by looping through all database names on the local MSDE
Server.
For Each db In osvr.Databases
If db.Name = sDBName Then 'The database exists.
oClsErrorLog.ErrorLog "databaseExists The
database exigts. . ."
fDataBaseFlag = True
databaseExists = True
Exit For 'Get out of |loop.
End If
Next

If fDataBaseFlag = False Then 'There is no database name
match.
databaseExists = False
End If

ExitSub:

"Turn off error checking so that errorsin destroying objects

'don't cause an endless loop.

On Error GoToO

On Error Resume Next

osvr.DisConnect

oClsErrorLog.ErrorLog " databaseExistsDestroying the
objects created for" & _

" checking datebase existence. . ."

Set osvr = Nothing

Screen.MousePointer = 0
Exit Function

StartError:
Screen.MousePointer = 0
If Err.Number = -2147203048 Then
‘This error occurs when the password or user ID is
wrong
oClsErrorLog.ErrorLog "databaseExists Incorrect
password or user ID . . ."
MsgBox "Invaid User ID or Password.", vbCritical, _
"Connection Failed"
databaseExists = False
Resume ExitSub
Else
‘Unknown error. Don't show any message box
oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
databaseExists = False
Resume ExitSub
End If

End Function

'Function/Sub Name: StartAndCopy()

'‘Description: This procedure combines the functionality of
the

‘startM SDE() and copyMDF() functionswith the added
ability to

‘determine if a copy is needed based upon the results of the
'startM SDE() call. For example, if aremote connectionis
attempted

‘and succeeds, startM SDE() will return True, but no copy will
be

‘neccessary.

'In addition, this function detectsif a copy failed and will
‘attempt to repair the database by offering an option to restore

‘an old copy of the database. Thisis useful when caled from
‘afailed FTP update attempt.

'Input:
' sSvrNameln - Thesarvertostat
' sUserln - Theuser ID with which to start the server

' sPasswordin - The user password

' sMDFNameln - The name of the MSDE Database to be
copied
- The name of the database

' sDBNameln
'Output: Success or Failure
'References:

' - Congtructors.bas
' - HFACSMain.bas

"##M odel | d=3B294D24005D

Friend Function StartAndCopy(Optiona sSvrNameln As
String, Optiona sUserln As String, Optional sPasswordin As
String, Optional SMDFNameln A s String, Optional
sDBNameln As String) As Boolean

'Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrNameln) <>"" Then
sSvrName = sSvrNameln

End If

If Trim(sUserln) <>"" Then
SUser = sUserln

End If

If Trim(sPasswordIn) <>"" Then
sPassword = sPasswordin

End If

If Trim(sMDFNameln) <>"* Then
SMDFName = sMDFNameln

End If

If Trim(sDBNameln) <>"" Then
sDBName = sDBNameln

End If

"Test result variables
Dim bTestSuccessl As Boolean
Dim bTestSuccess2 As Boolean

bTestSuccessl = Me.startM SDE()

'If logging to aremote machine, the startM SDE will verify
'that the database exists and set thisflag. No copy will
'be needed, because the database exists on the remote
server.
If gblnNoCopyNeeded = True Then StartAndCopy = _
True: Exit Function

'Only copy if the start was a success
If bTestSuccessl = True Then

bTestSuccess2 = Me.copyMDF()
End If

DoEvents 'Redraw the screen

'if the copy failed, attempt restore of old DB.

If bTestSuccess2 = False Then

oClsErrorLog.ErrorLog " StartAndCopy - Trying to restore
theoldDB . . ."

292

'‘Don't try to restoreif thisisthefirst time DB has
‘been run
If HFACSMain.gStrFirstRun ="T" Then
StartAndCopy = False
Exit Function
End If

If MerestoreOldDB = False Then
StartAndCopy = False
Exit Function
Else
StartAndCopy = True
Exit Function
End If
Else
StartAndCopy = True
End If

End Function

'Function/Sub Name: restoreOldDB()

'‘Description: Thisfunction is called when acopy operation
fails and

'there is no HFACS database fil e attached to the local server.
Once

'called, thisfunction promptsthe user to restore the old
database.

'If the user optsto restore the database, arestore is first
attempted

‘using the current logon information. If this attempt fails, a
second

‘attempt ismade asa"last -ditch” effort using the"sa' logon
and

'no password. |If both attempts fail, the database will not be
installed

'on the local server and the HFACS program will not
function. System

‘Administrator assistance will be required to attach a copy of
the

'database.

'Input:

' sSvrNameln - Theserver to start

' sUserln - Theuser ID with which to start the server

' sPasswordIin - The user password

' sMDFNameln - The name of the MSDE Database to be
copied
- The name of the database

' sDBNameln
'Output: Success or Failure
'References:

' - Congtructors.bas
' - HFACSMain.bas

"##M odel |[d=3B294D2400FA

Friend Function restoreOldDB(Optional sSvrNameln As
String, Optiona sUserln As String, Optional sPasswordin As
String, Optional SMDFNameln As String, Optional
sDBNameln As String) As Boolean

On Error GoTo StartError

'Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrNameln) <>"" Then
sSvrName = sSvrNameln

End If

If Trim(sUserln) <>"" Then
sUser = sUserin

End If

If Trim(sPasswordin) <>"" Then
sPassword = sPasswordin

End If

If Trim(sMDFNameln) <>"" Then
sMDFName = sMDFNameln

End If

If Trim(sDBNameln) <>"" Then
sDBName = sDBNameln

End If

Dim response As Variant

response = MsgBox("HFACS was unable to install anew
update” & _

" or something is preventing it from finding the

database’ & _

" ontheloca machine." & Chr(13) & Chr(13) & _
"If you recieved this message after trying to perform an"

FSO.DeeteFile HFACSMain.gStirAppPath & _
Left(HFACSMain.gStrDatabaseFileName, _
(Len(SMDFName) - 4)) & "_log.Idf", True

FSO.CopyFile HFACSMain.gStrAppPath & _
Left(HFACSMain.gStrDatabaserileName, _
(Len(HFACSMain.gStrDatabaseFileName) - 4)) &
"_log.ldf.old", HFACSMain.gStrAppPath & _
Left(HFACSMain.gStrDatabaserileName, _
(Len(HFACSMain.gStrDatabaseFileName) - 4)) & _
"_log.ldf", True

On Error GoTo 0

On Error GoTo StartError

‘Now try to copy it to the Server
Dim bTestSuccess As Boolean

293

bTestSuccess = Me.copyMDF
If bTestSuccess = False Then

If that didn't work, then revert to the origina
'system settings and try onelast time.
HFACSMain.gSruID ="sa"
HFACSMain.gSirPWD =""
HFACSMain.gStrServerName = "(local)"
HFACSMain.gStrDatabaseFileName =
"HFACS.mdf"
HFACSMain.gStrDatabaseName = "HFACS'
HFACSMain.gStrAppPeth =
HFACSMain.gStrAppPath
HFACSMain.gStrAutoLogon = "F"
HFACSMain.gStrFirstRun ="F"
HFACSMaingStrNTauth ="F'
HFACSMain.gStrTypeDB =
HFACSMain.gStrTypeDB

Dim bLast TryWDefaultSettings As Boolean
bLastTryWDefaultSettings = Me.copyM DF(True,
"(local)",

& _ "sa',, "HFACS.mdf", "HFACS")
" update viadisk or FTP, then you should revert to the"
& _ 'If that failed inform the user of the problem.
" previous copy of the database." & Chr(13) & Chr(13) If bLastTryWDefaultSettings = False Then
& Screen.MousePointer = vbDefault
"Do you want to revert to the previous copy of the MsgBox "A fatal error has occured and HFACS
database?’, _ has" & _
vbY esNo + vbDefaultButtonl + vbExclamation, _ "become corrupted.” & Chr(13) & Chr(13) & _
"Problem Finding Database") "Please contact your system administratorto" & _
"replace the corrupted files.", voOKOnly, _
If response = vbY es Then 'Attempt to restore the old DB "Fatal Error - HFACS Is Corrupted"
restoreOldDB = False
'‘Declare an object for hard disk file manipulation GoTo ExitSub
Dim FSO As Scripting.FileSystemObject Else
Set FSO = CreateObject(" Scripting.FileSystemObject”) restoreOldDB = True
GoTo ExitSub
DoEvents 'Redraw the screen End If
'Attmpt to revert to the old copy of the database Else
Screen.MousePointer = vbHourglass restoreOldDB = True
End If
"Turn off error checking for disk manipulation
On Error GoTo 0 Else
On Error Resume Next ‘Just exit.
FSO.DeeteFile HFACSMain.gStrAppPath & _ restoreOldDB = Fase
HFACSMain.gStrDatabaserileName, True Exit Function
FSO.CopyFile HFACSMain.gStrAppPeth &
sSMDFName & _ End If
".old", HFACSMain.gStrAppPath & sMDFName,
True ExitSub:

DoEvents 'Redraw the screen
Screen.MousePointer = vbDefault
Set FSO = Nothing

Exit Function

StartError:
Screen.MousePointer = 0
‘Unknown error
oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
MsgBox "An error occurred restoring the database.” &
Chr(13) & _
Chr(13) & "The detailed error messageis. " & _
Err.Description & Chr(13) & Chr(13) & _

"Error Number: " & Err.Number, _

vbOKOnly + vbCritical, "Error Restoring Database"
restoreOldDB = Fase
Resume ExitSub

End Function

'Function/Sub Name: restartM SDE()

'‘Description: Before an .mdf database file can be dropped
and anew

'file attached, al users must be logged off. Thisfunction
stopsand

'restarts the server effectively ensuring al users are logged
off

‘and that the server services are refreshed. Thisfunction can
only

'be used in conjunction with an update operation (either disk
or FTP)

'asit also copiesthefile from the download/temp copy
directory

"(which is the application path) to the server data directory.
This

‘copy can only be performed when the server is stopped.

'Input:

' sSvrNameln - Theserver to start

' sUsarln - Theuser ID with which to start the server
' sPasswordln - The user password

'‘Output: Success or Failure

'References:

' - Congtructors.bas
' - HFACSMain.bas
" - frmWait.frm

"##Model | d=3B294D240196

Friend Function restartM SDE(Optional sSvrNameln As
String, Optiona sUserln As String, Optiona sPasswordin As
String) As Boolean

Screen.MousePointer = 11
On Error GoTo StartError

'Check for optional arguments and assign to defaults as
needed.

If Trim(sSvrNameln) <>"" Then
sSvrName = sSvrNameln

End If

If Trim(sUserln) <>"" Then
SUser = sUserln

End If

If Trim(sPasswordIn) <>"" Then
SPassword = sPasswordln

End If

ek kkkkkhkkkhkkkkhkkkhk

'Remove thisto alow restarting of other serversthan local.

sSvrName = "(local)"

'Declare an object for SQL server manipulation
Dim osvr As sgldmo.SQL Server

'Create the SQLDMO Server Object.

294

Set osvr = CresteObject(* SQLDMO.sglserver”)

osvr.LoginTimeout = 20
'Start Server.

‘The server must be started and connected in order to stop

'Attempt a connection.
'If nologin name, use NT Integrated security in an attempt.
'to connect.
If SNTAuth="T" Then
osvr.LoginSecure = True
End If

‘Thisisthe actual connection attempt.
osvr.Connect sSvrName, sUser, sPassword

‘Create atemp variable for the path to the server DB files

'becuase once the server is stopped, you can't access the
osvr object

Dim sPathToServer As String

sPathToServer =
osvr.Databases("master").PrimaryFilePath

On Error GoTo 0

‘The shutdown command causes an error because the
current

‘connection is log, so resume next.

On Error Resume Next

oClsErrorLog.ErrorLog "restartM SDE-Attempting to stop
server. . ."

osvr.Shutdown (True)

oClsErrorLog.ErrorLog "restartM SDE-The server was

successfully stopped . . "

Set osvr = Nothing

HFACSMain.gStrTextMessage = "Stopping the server . . "
HFACSMain.gIntTimeToWait = 15

‘This keeps the form visible when it loses the focus
Screen.ActiveForm.AutoRedraw = False

'Pause for 15 seconds while the server redlly restats
frmWait.Show 1

Screen.ActiveForm.AutoRedraw = True

'Repaint the frmFtpUpdate from if it's open
oClsErrorLog.ErrorLog "IsFTP form open?=>" & _
HFACSMain.|sOpen("frmFtpUpdate’)
If HFACSMain.|sOpen("frmFtpUpdate") Then
frmFt pUpdate. Refresh
oClsErrorLog.ErrorLog "restartM SDE-Attempting to
restart server . . ."
DoEvents 'Redraw screen

'Repaint the frmFtpUpdate from if it's open
oClsErrorLog.ErrorLog "Is frmDiskUpdate form open? =>
"e
HFACSMain.|Open("frmDiskUpdate")

If HFACSMain.|sOpen("frmDiskUpdate") Then
frmDiskUpdate.Refresh

oClsErrorLog.ErrorLog "restartM SDE-Attempting to
restart server . . ."

DoEvents 'Redraw screen

TRA KA AR AR A IR A AR IR A IR AR A IR A A hhkhkhkhkhkhkhkhkhkhkhkhkhhhxx

"This block is responsible for copying the current db fileto

'the local AppPath asthe most current backup (.old) thisis

‘thefile that will be restored in the event of catastrophic

‘failure. It can only be accomplished here because the
SQL

'server has to be stopped.

TR AR A KK A KR A KR A AR A KA A IR A IR A I A Ak kA hkhkhkkhkhkkhkhkkkhkkkkkx

"Turn off error checking for disk manipulation
On Error GoTo 0
On Error Resume Next

'Declare an object for hard disk filemanipulation
Dim FSO As Scripting.FileSystemObject
Set FSO = CreateObject(" Scripting.FileSystemObject")

'Copy the last backup to the AppPath as the last good
backup.
oClsErrorLog.ErrorLog
Mhkkkhkkhkhkhkhkkhkhkhkhkhkhhkhkhkhkhkhhkhkhhkhhkhkhhkhhkhkhkhkhhkhkhkhkhhkhxx"
oClsErrorLog.ErrorLog " Copying the most recent files
tothe AppPath"
oClsErrorLog.ErrorLog "while the server is stopped.”
oClsErrorLog.ErrorLog
Whkkkkhkkkhkhkkhkkkhkhkkkhkhkhkkhhkhkhkhkhhkkhhkhkhkkhhkhkkhkkhkhkkhkhkkhkx"
FSO.CopyFile sPathToServer &
HFACSMain.gStrDatabasefileName, _
HFACSMain.gStrAppPath &
HFACSMain.gStrDatabaseFileName & _
".old", True

FSO.CopyFile sPahToServer &
Left(HFACSMain.gStrDatabaseFileName, _
(Len(HFACSMain.gStrDatabaseFileName) - 4)) &
" _log.ldf", _
HFACSMain.gStrAppPath &
Left(HFACSMain.gStrDatabaseFileName, _
(Len(HFACSMain.gStrDatabaseFileName) - 4)) & _
" log.Idf.old", True

Set FSO = Nothing

295

Turn on error checking
On Error GoTo 0
On Error GoTo StartError

'Start the server back up again.
Me.startMSDE

'Pause for 5 seconds while the server redlly restarts
HFACSMain.gStrTextMessage = " Starting the server . . "
HFACSMain.gIntTimeToWait = 5

frmWait.Show 1

DoEvents 'Redraw screen

On Error GoTo 0

restartM SDE = True

ExitSub:
Screen.MousePointer = 0
Exit Function

StartError:
Screen.MousePointer = 0
oClsErrorLog.ErrorLog "Error: " & Err.Description & ",
Number: " & Err.Number
MsgBox "An error occurred restarting the server.” &
Chr(13) _
& Chr(13) & "The detailed error messageis: " & _
Err.Description & Chr(13) & Chr(13) & _
"Error Number: " & Err.Number, _
vbOKOnly + vhCritical, "Problem Restarting Server"
restartMSDE = False
Resume ExitSub

End Function

Private Sub Class_Terminate()
Set oClsErrorLog = Nothing

End Sub

CLASS-MUpdateController

Option Explicit

CLASS DESCRIPTION

'Class Name: UpdateController.cls

'Author: Pat Flanders & Scott Tufts

‘Thisclassisthe controller classfor the cFTP class, the FTP
‘form (frmFTPUpdate), and the common dialog control for
reading an update

‘from adisk.

'References:
' - Microsoft Windows Common Controls 6.0

"NOTE: See function headers for internal component
references.
‘HHHHHAHE

Tkkkkkhkhkhkkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkkkkkk

' FUNCTIONS

Tkkkkkhkkkkhkkhkkhkkhkkhkkhkhhkhkhhkhhhkhhhkhhhhhhkhhhkhhhkhdhkhhhhixkx

'Function/Sub Name: getUpdate()

'Description: 'This function initiates the FTP update session
'creating an instance of frmFtpUpdate which actudly
performsthe

‘download and update.

‘Input: None

'Output: Success or Failure

'References:
' - frmFtpUpdate.frm

"##Modelld=3B8294D0D03C8
Friend Function getUpdate() As Boolean

frmFtpUpdate.Show 1

'Return results of the FTP session

If gblnFTPSuccess = True Then getUpdate = True Else
getUpdate = False

End Function

'Function/Sub Name: getUpdateDisk()

'‘Description: This function displaysthe " Open" dialog box
from

'the Microsoft Windows Common Controls 6.0 allowing the
user to

296

'identify a path on a disk/network share where the
HFACS.mdf/_|og.Idf

'update filesreside. It then copiesthefilesto the application
'path on the local machine and instantiates an instance of
'frmDiskUpdateto install them.

‘Input: None
'‘Output: Success or Failure

'References:
' - frmDiskUpdate.frm

"##M odel | d=3B294DOEO00F
Friend Function getUpdateDisk() As Boolean

On Error GoTo StartError

'Check to make sure user is updating the local server
If HFACSMain.gStrServerName <>"(local)" Then
MsgBox "Y ou can only perform an update when logged
into" & _
"the'(local)' server.", _
vbExclamation + vbOK Only, "Can't Update"
getUpdateDisk = False
GoTo ExitSub
End If

'Creste a dialog box object
Dim oDialog As New M SComDIg.CommonDiaog

‘Variable to hold the path and file to get.
Dim sFileName As String

' Set CancelError is True

oDialog.CancelError = True

' Set flags

oDialog.Flags = cdlOFNHideReadOnly

' Set filters

oDialog.Filter = "HFACS Database Files
(HFACS.mdf)|HFACS.mdf"

' Specify defaullt filter

oDiaog.Filterlndex = 1

' Display the Open dialog box

oDialog.ShowOpen

sFileName = oDiadog.FileName

DoEvents 'Redraw the screen

Dim bDiskUpdateSuccess As Boolean
bDiskUpdateSuccess =
frmDiskUpdate.performDiskUpdate(sFileName)

If bDiskUpdateSuccess = True Then
MsgBox "The HFACS update was successfully
installed!" & _
Chr(13) & Chr(13) & "HFACS will now re-
initidize.", _
vblnformation + vbOK Only, "Finished"
getUpdateDisk = True
Else
getUpdateDisk = False
End If

ExitSub: Screen.MousePointer = vbDefault

Set oDialog = Nothing getUpdateDisk = False
Resume ExitSub
Exit Function
End Function
StartError:

297

FORMCLASS-frmDiskUpdate

Option Explicit

Turn off error checking for disk manipulation
! On Error GoTo 0

FORM DESCRIPTION On Error Resume Next

'‘Copy thefile. . . renaming it to HFACS.mdf
'Class Name: frmDiskUpdate.frm FSO.DeleteFile HFACSMain.gStrAppPath & _
' HFACSMain.gStrDatabaseFileName, True
'‘Author: Pat Flanders & Scott Tufts FSO.CopyFile sFileToGet, HFACSMain.gStrAppPath & _
' HFACSMain.gStrDatabaseFileName, True
"This classisresponsible for performing an update of the FSO.DeleteFile HFACSMain.gStrAppPath & _
HFACS L eft(HFACSMain.gStrDatabaserileName, _
'database from a disk/network share. (Len(HFACSMain.gStrDatabaseFileName) - 4)) &
' "_log.ldf", True
'References: None Dim sTempJustTheFileName As String
' Dim sTempJustThePathPart As String
"NOTE: Seefunction headersfor interna component sTempJustTheFileName = Right(sFileToGet, _
references. Len(HFACSMain.gSt rDatabasefileName))

sTempJustThePathPart = Left(sFileToGet, _
(Len(sFileToGet) -
Len(HFACSMain.gStrDatabasefileName)))
FSO.CopyFile sTempJustThePathPart & _

Thhkkhkhkhkhkhkhkhhhhkhkhhhhhhkhhhhhkhkhhkhhhhkhdhhhkhkhhkhhhkhhdhkhihk Ldt(sTaT]pJuSThd:lld\lane
: FUNCTIONS (Len(sTempJustTheFileName) - 4)) & _
Thhkkhkhkhkhkhkhkhkhhhhkhhhhhhkhhhhhkhkhhkhhhhkhdhhhkhhhkhhhkhhdhik "_Iog_ldf", HFACg\/IaIn-ggrAppmh &

Left(sTempJustTheFileName, _
(Len(sTempJustTheFileName) - 4)) & "_log.Idf", True
On Error GoTo 0
On Error GoTo vbErrorHandler

'Function/Sub Name: performDiskUpdate()

'‘Update the form
'Description: Thisfunction performs the actual update, frmDiskUpdate.lblAction.Caption = "Ingtalling . . . "
updating frmDiskUpdate.lbl Action.Refresh

'the form asiit progresses.
' 'Install the new File

'Input: Dim bTestSuccess As Boolean

' sFileToGet - Path to the HFACS.mdf and HFACS log.ldf bTestSuccess = True

files bTestSuccess =

' used to update the database. Congtructors.New_MSDE(HFACSMain.gStrUID, _

HFACSMain.gStrPWD, _

'‘Output: Success or Failure HFACSMain.gStrServerName, _

' HFACSMain.gStrDatabaseFileName, _

'References: HFACSMain.gStrDatabaseName, _

' - Congtructors.bas HFACSMain.gStrAppPeath, _

' - MSDE.cls HFACSMain.gStrAutoLogon, _

' - HFACSMain.bas HFACSMain.gStrRirstRun, _

! HFACSMain.gStrNTauth, _

'##Model |d=3B294D 160242 HFACSMain.gStrTypeDB)

Friend Function performDiskUpdate(sFileToGet As String)

As Boolean 'Updatetheform
frmDiskUpdate.lblAction.Caption = _

Me.Visble=True "Stopping and restarting server . . ."

frmDiskUpdate.Ibl Action.Refresh
On Error GoTo vbErrorHandler

'‘Restart MSDE

Screen.MousePointer = vbHourglass OMSDE restartM SDE

'Update the form 'Update the form

frmDiskUpdate.|bl Action.Caption = "Getting the new file . frmDiskUpdate.|bl Action.Caption = "Dropping old
. database.. . ."

frmDiskUpdate.lbl Action.Refresh frmDiskUpdate.|bl Action.Refresh

'‘Declare an object for hard disk file manipulation 'Drop theold file

Dim FSO As Scripting.FileSystemObject If oMSDE.dropDB <> True Then

Set FSO = CreateObject(" Scripting.FileSystemObject”) performDiskUpdate = False

298

GoTo ExitSub Set FSO = Nothing
End If MeVisble= Fase

'Update the form Exit Function
frmDiskUpdate.lbl Action.Caption = "Attaching new file. .
" vbErrorHandler:

frmDiskUpdate.Ibl Action.Refresh frmDiskUpdate.Ibl Action.Caption = Err.Description
frmDiskUpdate.lbl Action.Refresh
"Start and copy the new file over MsgBox "An error occurred trying to install thefiles.
If oM SDE.StartAndCopy <> True Then Verify" & _
performDiskUpdate = False " that you have adequate permissionsto perform this
GoTo ExitSub update" & _
End If Chr(13) & Chr(13) & "The detailed error messageis: " &
Screen.MousePointer = vbDefault Err.Description & Chr(13) & Chr(13) & "Error Number: "
& Err.Number, _
performDiskUpdate = True vbOKOnly + vbCritical, "Error During Ingtall"
performDiskUpdate = False
ExitSub: Resume ExitSub
‘Cleanup
Set oM SDE = Nothing End Function

299

FORMCLASS-frmFtpUpdate

Option Explicit

FORM DESCRIPTION

'Class Name: frmFtpUpdate.frm

'Author: Pat Flanders & Scott Tufts

"This classisresponsible for performing an update of the
HFACS

'database via FTP. This class usesthe FTPServer.exe server
and

'the CallbackCls.cls to receive status messages from the
HFACS

'FTP server.

'ASIDE: The FTP server (HFACSFTP.exe) providesthe
functions needed

'to get FTP updates. These functions and their associated
classes

‘were removed from this component and compiled separately
inorder

'to work around the inability of Visual Basic to provide
support

for free threading. By placing the FTP functionalilty ina
'separately compiled executable, it can runin it'sown
process,

‘which allows screen updates during long FTP downloads.

'References:

' - Microsoft Data Formating Object Library 6.0
' - Microsoft Scripting Runtime

' - GIF89 1.0 (For animated Gl Fs on Forms)

' - The HFACSFTP.exe ftp server.

"NOTE: See function headers for internal component
references.

Tkkkkkhkkkhkkkhkkhkkhkkhkhkhkhkhkhhhkhkhhkhhhkhhhhhhhhhkhhhkhhhkhhhhixkx

' PROPERTIES

Ykkkkkkkkhkkkkhkkkkhkkkkhkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkkhkhkhkkkhkkkhkkkxkx

'Object variable for holding an instance of the FTPserver
'##Model |[d=3B294D1F032D
Dim oDoFTPThread AsHFACSFTP.cFTP

'A temp string variable to smplify string manupulation when
'determining paths on the FTP server and for download
locations

"##Model1d=3B294D 1F0399

Dim sTempJustTheFileName As String

Ykkkkkkkhkkkkhkkkkhkkhkkkkhkkkhkkkhkhkhkkkhkkkhkhkkkhkkhkkhkhkkhkkhkkkhkkkxkx

' FUNCTIONS

Ykkkkkkkkhkkkkhkkkkhkkkkhkkhkkkhkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkhkhkkhkkkhkkkxkx

300

:Functi on/Sub Name: cmdCancel_Click()
'‘Description: This sub closes theform
:Input: None

‘Output: None

'References: None

"##M odel |d=3B294D20001F
Private Sub cmdCancel_Click()

Unload Me

End Sub

:Functi on/Sub Name: Form_Load()

'‘Description: This sub resets flags when the form is opened.
:I nput: None

‘Output: None

'References. None

"##M odel | d=3B294D20004E
Private Sub Form_L oad()

'Reset globd variable for ind cating a successful FTP to
false
gblnFTPSuccess = False

‘Enable buttons
EnableControls False

End Sub

'Function/Sub Name: Form_Load()

'Description: Thissub verifiesthat the FTPisbeing
performed on

‘aloca server and intiates the FTP connection by
instantiating

‘an FTP server object. It then downloads the first new
database file

'(HFACS.mdf) to the application path. When download of
thefirst

fileis complete, the CallbackClsinterface is notified by the
'FTP server, which in turn executes the download of the next
file

'viathe GotFileDoNext() sub.

'Input: None

‘Output: None

'References. None

"##Model | d=3B294D20007D
Private Sub cmdConnect_Click()

On Error GoTo vbErrorHandler

If HFACSMain.gStrServerName <> "(local)" Then
MsgBox "Y ou can only perform an update when logged
intothe" & _
"(local)' server.”, _
vbExclamation + vbOK Only, "Can't Update
GoTo ExitSub
End If

Screen.MousePointer = vbHourglass
frmFtpUpdate.|bl Action.Caption = "Initializing connection

" frmFtpUpdate. bl Action.Refresh

' ask the FTP server to create an FTP object
Set oDoFTPThread = New HFACSFTP.cFTP

‘Connect
oDoFTPThread.Connect txtServer.Text, txtUser. Text,
txtPassword.Text
frmFtpUpdate.|bl Action.Caption = "Downloading .mdf file
(this" & _
"could take awhile) . . ."
frmFtpUpdate.Ibl Action.Refresh

‘Disable buttons
EnableControls oDoFTPThread.Connected

‘Download thefile
frmFtpUpdate.gif Downloading.Visible = True 'Show
animated GIF
frmFtpUpdate.gif Downloading.Play
‘Add a'\' to the end of apath entry if they left it off
If (Len(txtPath.Text) > 1) And (Right(txtPath.Text, 1) <>
"\
Then txtPath.Text = txtPath.Text & "\'
'Remove aleading '\' from apath entry.
If Left(txtPath.Text, 1) = "\" Then txtPath. Text = _
Right(txtPah.Text, Len(txtPath.Text) - 1)

'Set flag for callback function
gintCounter =1

‘Download thefirst file
0oDOFTPThread.StartGetFTP txtPath. Text & _
HFACSMain.gStrDatabaseFileName,
HFACSMain.gStrAppPath & _
"UPDATE-" & HFACSMain.gStrDatabaseFileName, _
ftBinary, New CallbackCls

ExitSub:
Exit Sub

VvbErrorHandler:
Screen.MousePointer = vhDefault
frmFtpUpdate.gifDownloading.Visible = False 'Hide
animated GIF
If Err.Number = -2147219498 Then
‘Thistraps a bad path entry

301

MsgBox "Can't find that path on the FTP server.",
vbOKOnly, "Error"
Resume ExitSub
Else 'Unknown error
MsgBox "An error occurred attempting FTP." &
Chr(13) & Chr(13) & _
"The detailed error messageis: " & Err.Description &
Chr(13) & _
Chr(13) & "Error Number: " & Err.Number, _
vbOKOnly + vbCritical, "FTP Error"
End If
Resume ExitSub

End Sub

'Function/Sub Name: GotFleDoNext()

‘Description: This sub downloads the second new database
T(IllﬂeFACS_Iog.Idf) to the application path. When download
'?;cl Eehii complete, the CallbackCls interfaceis notified by the
'FI'P server, which in turn executes the installation of the 2
:ﬂ\llieasthe GotFileLast() sub.

'Input: None
‘Output: None

'References. None

'##Model|d=3B294D2000AB
Friend Sub GotFileDoNext()

On Error GoTo vbErrorHandler

' ask the FTP server to create an new FTP object
0oDOoFTPThread.DisConnect

'Set oDoFTPThread = Nothing

'Set oDoFTPThread = New HFACSFTP.cFTP

'‘Connect
oDoFTPThread.Connect txtServer.Text, txtUser.Text,
txtPassword. Text

'Set flag for callback function
gintCounter = 2

'Download the second file
frmFtpUpdate.lbl Action.Caption = "Downloading _log.Idf
file..."
frmFtpUpdate.Ibl Action.Refresh
sTempJustTheFileName =
Left(HFACSMain.gStrDatabaseFileName, _
(Len(HFACSMain.gStrDatabaseFileName) - 4)) &
"_log.ldf"
oDoFTPThread. StartGetFTP txtPath. Text &
sTempJustTheFileName, _
HFACSMain.gStrAppPath & "UPDATE2-" &
sTempJustTheFileName, ftBinary, New CallbackCls

ExitSub:
Exit Sub

VvbErrorHandler:

Screen.MousePointer = vbDefault
frmFtpUpdate.gif Downloading.Visible = False 'Hide
animated GIF
MsgBox "An error occurred attempting FTP." & Chr(13)
& Chr(13) & _
"The detailed error messageis: " & Err.Description &
Chr(13) & _
Chr(13) & "Error Number: " & Err.Number, _
vbOKOnly + vbCritical, "Error Attempting FTP"
Unload Me

End Sub

'Function/Sub Name: GotFilel ast()

'‘Description: This sub performs the actual update, updating
'the formto show status as it progresses.

‘Input: None
‘Output: None

'References. None

'##Model1d=3B294D2000DA
Friend Sub GotFilel ast()

On Error GoTo vbErrorHandler

'Destroy connection to the FTP server
0oDoFTPThread.DisConnect
Set oDoFTPThread = Nothing

frmFtpUpdate.gifDownloading.Visible = Fase 'Hide
animated GIF

frmFtpUpdate.Ibl Action.Caption = "File downloaded.
Creating backups.. . ."

frmFtpUpdate.Ibl Action.Refresh

DoEvents 'Redraw screen and check for events

cmdCancel .Enabled = False

'Declare an object for hard disk file manipulation
Dim FSO As Scripting.FileSystemObject
Set FSO = CreateObject(" Scripting.FileSystemObject")
'‘Back up the exiging hfacs.mdf and renamethe
downloaded fileto hfacs.mdf
On Error GoTo 0
On Error Resume Next "Turn off error checking for the
disk manipulation
FSO.DéleteFile HFACSMain.gSirAppPeth &
HFACSMain.gStrDatabasefileName, True
FSO.CopyFile HFACSMain.gStrAppPath & "UPDATE-"
&
HFACSMain.gStrDatabaseFileName, _
HFACSMain.gStrAppPath &
HFACSMain.gStrDatabaseFileName, True
FSO.DeleteFile HFACSMain.gStrAppPath & "UPDATE"
&
HFACSMain.gStrDatabaseFileName, True
FSO.Delgefile HFACSMain.gStrA ppPath &
sTempJustTheFileName, True
FSO.CopyFile HFACSMain.gStrAppPeath & "UPDATE2-"
&

302

sTempJustTheFileName, HFACSMain.gStrAppPath &
sTempJustTheFileName, True
FSO.DéeleteFile HFACSMain.gStrAppPath & "UPDATE2-
" & sTemplustTheFileName, True
On Error GoTo 0
On Error GoTo vbErrorHandler

'Install the new File

frmFtpUpdate.lbl Action.Caption = "Ingtalling . . ."
frmFtpUpdate.Ibl Action.Refresh

DoEvents 'Redraw screen and check for events

kkkkkkkkkkkkkkk R.It thecodehae

Dim bTestSuccess As Boolean

bTestSuccess = True

bTestSuccess =

Congtructors.New_MSDE(HFACSMain.gStrUID, _

HFACSMain.gStrPWD, _
HFACSMain.gStrServerName, _
HFACSMain.gStrDatabaseFileName, _
HFACSMain.gStrDatabaseName, _
HFACSMain.gStrAppPeath, _
HFACSMain.gStrAutoLogon, _
HFACSMain.gStrFirstRun, _
HFACSMain.gStrNTauth, _
HFACSMain.gStrTypeDB)

OMSDE restartM SDE
DoEvents 'Redraw screen and check for events
frmFtpUpdate.|bl Action.Caption = ""Dropping old database

N frmFtpUpdate.IblAction.Refreﬁ]
Me.Refresh

If oM SDE.dropDB <> True Then
gblnFTPSuccess = Fase
GoTo ExitSub
End If
DoEvents 'Redraw screen and check for events
frmFtpUpdate.Ibl Action.Caption = " Attaching new
database . . ."
frmFtpUpdate.Ibl Action.Refresh

If oM SDE.StartAndCopy <> True Then
gblnFTPSuccess = False
GoTo ExitSub

End If

DoEvents 'Redraw screen and check for events

frmFtpUpdate.lblAction.Caption = "Finishingup . . ."
frmFtpUpdate.Ibl Action.Refresh
Screen.MousePointer = vbDefault

MsgBox "The HFACS file was successfully installed.” &
Chr(13) _
& Chr(13) & "HFACS will now re-initiaize.", _
vbInformation + vbOKOnly, "Finished"
gblnFTPSuccess = True

ExitSub:
Set oM SDE = Nothing
Set FSO = Nothing
Unload Me

Exit Sub

VvbErrorHandler:
Screen.MousePointer = vbDefault

frmFtpUpdate.gfDownloading.Visible = False 'Hide
animated GIF
If Err.Number = -2147219498 Then
‘Thistraps a bad path entry
frmFtpUpdate.|bl Action.Caption = "Can't find that path
onthe" & _
"FTP server or the connection was lost."
frmFtpUpdate.Ibl Action.Refresh
MsgBox "Can't find that path on the FTP server.”,
vbOKOnly, "Error"
Resume ExitSub
Else 'Unknown error
frmFtpUpdate.|bl Action.Caption = Err.Description
frmFtpUpdate.Ibl Action.Refresh
MsgBox "An error occurred trying to install the files
after" & _
" download. Verify that you have adequate
permissionsto” & _
"perform thisupdate." & Chr(13) & Chr(13) & _
"The detailed error messageis: " & Err.Description &
Chr(13) _
& Chr(13) & "Error Number: " & Err.Number, _
vbOKOnly + vbCritical, "Error Installing Files'
End If
Resume ExitSub

End Sub

'Function/Sub Name: cmdDisconnect_Click()
'Description: This sub performs disconnect from the FTP
server

‘when it isenabled. It isnot enabled except during
development.

'Input: None

'‘Output: None

'References. None

"##Model |[d=3B294D200109
Private Sub cmdDisconnect_Click()

On Error GoTo vbErrorHandler
' Disconnect from the FTP Server

0DoFTPThread.DisConnect
EnableControls oDoFTPThread.Connected

Exit Sub

VvbErrorHandler:
MsgBox Err.Description

303

End Sub

'Function/Sub Name: EnableControls()

'‘Description: This sub performs dynamically enables/disbles
buttons

‘on the form based upon the connection state of the FTP
Server.

'Input:
' bConnected - Boolean valueindicating that the server is
' connected or disconnected.

'‘Output: None

'References. None

"##Model|[d=3B294D200138
Private Sub EnableControls(ByVa bConnected As Boolean)

txtServer.Enabled = Not (bConnected)
txtPath.Enabled = Not (bConnected)
txtUser.Enabled = Not (bConnected)
txtPassword.Enabled = Not (bConnected)
cmdConnect.Enabled = Not (bConnected)
cmdDisconnect.Enabled = bConnected

End Sub

'Function/Sub Name: Form_Unload()

'Description: This sub performs cleanup operations,
ensuring all
'objects are destroyed when the form is closed.

'Input:
' Cancel - Determinesif formisunloaded or hidden
'‘Output: None

'References. None

'##Model|d=3B294D2001B5
Private Sub Form_Unload(Cancel As Integer)

On Error Resume Next

'Make sure the FTP server is disconnected and destroy it.

If oDoFTPThread.Connected = True Then
oDoFTPThread.DisConnect

Set oDoFTPThread = Nothing

End Sub

FORMCLASS-ODBL ogon

Option Explicit

FORM DESCRIPTION

R

'ClassName: frmODBLogon.frm

'‘Author: Pat Flanders & Scott Tufts

‘Thisclassisresponsible for aprompted logon. | provides
the

‘capability to query a user for logon parameters and test thier
'validity against a given instance of a SQL Server.

'References:
' - Microsoft Data Formating Object Library 6.0
' - GIF89 1.0 (For animated Gl Fs on Forms)

"NOTE: See function headers for internal component
references.

Ykkkkkkhkkkkkhkkkkkhkkkhkkhkkhkhkkhkkkhkhkhhkhkkhkkkhkhkhkkhkkkhkkkkxkx

' PROPERTIES

Ykkkkkkkkhkkkkhkkkkhkkkkhkkkhkhkkhkkkhkhkhkkhkhkkkhkhkkhkhkhkkkhkkkkx

'Warning flag indicating that the database needs to be
installedon

'the local server.

"##M odel|[d=3B294D 050203

Private bW arningFlag As Boolean

TR A A KA AR A AR A AR A IR A IR A IR A IR A A h kA khkhkhkhkkhkhkkhkhkkkkkx

FUNCTIONS

TR AR A AR A AR A AR A AR A IR A IR A IR Ah A h Ak hkhkhkhkhkhkhkkhkhkkkkkx

'Function/Sub Name: chkUseNTAuth_Click()

'‘Description: This sub updates form properties when the user
clicks

'the"Use NT Authentication" check box. It "grey's out" the
username

‘and password text boxes and makes them unavailable for
update.

'Input: None
'‘Output: None

'References. None

'##M odel | d=3B294D 050280
Private Sub chkUseNTAuth_Click()

If chkUseNTAuth.Value=1 Then
frmODBLogon.txtUID =""

304

frmODBLogon.txtUID.Enabled = False
frmODBL ogon.txtUID.BackColor = & H8000000F
frmODBL ogon.txtUI D.Refresh
frmODBL ogon.txtPWD =""
frmODBL ogon.txtPWD.Enabled = False
frmODBL ogon.txtPWD.BackColor = & H8000000F
frmODBL ogon.txtPWD.Refresh

Else
frmODBLogon.txtUID = HFACSMain.gStrUID
frmODBL ogon.txtUID.Enabled = True
frmODBL ogon.txtUI D.BackColor = & H80000009
frmODBL ogon.txtUI D.Refresh
frmODBL ogon.txtPWD = ""
frmODBL ogon.txtPWD.Enabled = True
frmODBL ogon.txtPWD.BackColor = & H80000009
frmODBL ogon.txtPWD.Refresh

End If

End Sub

:FunctionlSub Name: cmdCancel_Click()
:D&ecription: This sub closesthe form
:Input: None

'‘Output: None

'References. None

'##Model |[d=3B294D0502AF
Private Sub cmdCancel_Click()

Unload Me

End Sub

'Function/Sub Name: cmdOk_Click()

'‘Description: This sub combines the functionality of testing
the

‘connection with the user supplied paramaters and, if the
parameters

‘arevalid, updating the pertinent global variablesto enable
‘other component classintancesto function (e.g. to update the
".ini filewith new settings).

'Input: None
'‘Output: None
'References:

' - Congtructors.bas

' - MSDE.cls
' - HFACSMain.bas

'##Model1d=3B294D0502DE
Private Sub cmdOk_Click()

On Error GoTo StartError

'Only proceed with the update if all tests are passed
If testNewConn() = True Then

Screen.MousePointer = 11
Dim bResponseStartAndCopy As Boolean

'‘Check if NT Auth should be used
Dim sNTAuth As String
If chkUseNTAuth.Value= 1 Then

sSNTAuth="T"
Else

NTAuth="F"
End If

'Create an instance of MSDE copy the database if
needed
bResponseStartAndCopy =
Constructors.New_MSDE(txtUID.Text, _
IXtPWD.Text, txtServer.Text,
HFACSMain.gStrDat abaseileName, _
txtDatabase. Text, HFACSMain.gStrAppPath, _
HFACSMain.gStrAutoL ogon,
HFACSMain.gStrFirstRun, sSNTAuth, _
HFACSMain.gStrTypeDB)
bResponseStartAndCopy = oM SDE.StartAndCopy
Set oM SDE = Nothing

If bResponseStartAndCopy = True Then
'Set global variablesto new values
gStrUID = frmODBLogon.txtUID. Text
gStrPWD = frmODBL ogon.txtPWD. Text
gStrServerName = frmODBL ogon.txtServer. Text
gStrDatabaseName = frmODBL ogon.txtDatabase
If frmODBLogon.txtServer.Text ="(local)" And _
frmODBL ogon.txtPWD ="" Then
gStrAutoLogon="T"

Else
gStrAutoLogon ="F"
End If
If chkUseNTAuth.Vaue=1Then
gStrNTauth ="T"
Else
gSirNTauth ="F'
End If

Screen.MousePointer = 0
MsgBox "Successfully connected to server: " &
txtServer.Text, _
vblnformation + vbOK Only, "Connected"
gblnPromptedL ogonSuccess = True
Unload Me
Else
Screen.MousePointer =0
MsgBox "Thereis an unknown problem with this
connection." & _
Chr(13) & Chr(13), vbExclamation + vbOKOnly, _
"Connection Refused”
gblnPromptedL ogonSuccess = Fase
Unload Me
End If
End If

ExitSub:
Screen.MousePointer = 0
Exit Sub

StartError:
Screen.MousePointer =0

305

MsgBox "An unknown error occured in frmODBLogon at
method" & _
" cmdOK_Click." & Chr(13) & Chr(13) & _
"The detailed error messageis. " & _
Err.Description & Chr(13) & Chr(13) & _
"Error Number: " & Err.Number, _
vbOKOnly + vbCritical, "Error"
Resume ExitSub

End Sub

'Function/Sub Name: cmdTest_Click()

'Description: This sub calls the testNewConn() function and
returns

‘an appropriate message tothe user.

‘Input: None

‘Output: None

'References: None

'##M odel | d=3B294D05030D
Private Sub cmdTest_Click()

Dim bTestResults As Boolean 'Placeholder for test results
bTestResults = testNewConn() 'Run atest
If bTestResults = True And bWarningFlag = False Then
MsgBox " Connection test succeeded!”, vbinformation +
vbOKOnly, _
"Test Succeeded"
End If
If bTestResults = True And bWarningFlag = True Then
MsgBox "The database you specified isnot installed.” &

Chr(13) & Chr(13) & "If you proceed with this
connection, " & _
"you must have ADMINISTRATOR privelegesto the
thismachine" & _
"and the database so that the database canbe" & _
"automatically installed.", vbExclamation, "Warning"
End If

End Sub

'Function/Sub Name: Form_L oad(()

'Description: This sub setsthe states of the form controls
(visible/

'not visible and enad ed/disabled) based upon current global
variable

'settings.

'Input: None
‘Output: None
'References:

' - Congtructors.bas
' - HFACSMain.bas

"##Model | d=3B294D05033C
Private Sub Form_L oad()

‘Ensure the logon success flag is reset to false
gblnPromptedL ogonSuccess = False

'Set initial valueto false
gblnNoCopyNeeded = False

'Popul ate the combobox

Dimi As Integer

'‘Use the SQL DMO Application Object to find the
available SQL Servers

Dim 0SQL ServerDMOApp As sgldmo.Application

Set 0SQL ServerDMOApp = New sgldmo.Application

txtServer.Additem “(local)"
Turn off error checking incase there are no servers
detected
On Error Resume Next
Dim namX As NameL ig
Set namX =
0SQL ServerDMOApp.ListAvailableSQL Servers
For i =1 To namX.Count
If namX.ltem(i) <> "(local)" Then
txtServer.Addlitem namX.Item(i)
End If
Next
'Show top server
txtServer.Listindex = 0

txtServer.Text = HFACSMain.gStrServerName
'Populate the other text boxes
txtUID.Text = HFACSMain.gStiruID
txtDatabase. Text = HFACSMain.gStrDatabaseName
txtPWD.Text = HFACSMain.gStrPWD
If HFACSMain.gStrNTauth = "T" Then
chkUseNTAuth.Value=1
frmODBL ogon.txtUID =""
frmODBLogon.txtUID.Enabled = False
frmODBL ogon.txtUI D.BackColor = & H8000000F
frmODBL ogon.txtUI D.Refresh
frmODBLogon.txtPWD =""
frmODBL ogon.txtPWD.Enabled = False
frmODBLogon.txtPWD.BackColor = & H8000000F
frmODBL ogon.txtPWD.Refresh
End If

End Sub

'Function/Sub Name: testNewConn()

'Description: This sub tests the validity of the user specified
‘connectionvalues by attempting to start and connect to the
'server. Upon successful connection to the server specified, it
'verifies existence of the HFACS database on that server.

'Input: None
'‘Output: None
'References:

' - Congtructors.bas

' - MSDE.cls
' - HFACSMain.bas

'##M odel |[d=3B294D05036B
Private Function testNewConn() As Boolean

On Error GoTo StartError

Screen.MousePointer = 11

frmODBLogon.IblAction.Visible = True 'Show the
connect message

frmODBL ogon.|bl Action.Refresh

frmODBL ogon.gifNetwork.Visible = True 'Show animated
GIF

frmODBL ogon.gifNetwork.Play

'For some reason, if auser entersa';' it messup up the
logon . . . so remove them.
txtUID.Text = Replaoe(txtUIDT@d, n;n7 m.)

'Set Flags

bWarningFlag = False

testNewConn = False

Dim bResponseServer As Boolean
Dim bResponseDatabase As Boolean

'‘Check if NT Auth should be used
Dim sNTAuth As String
If Me.chkUseNT Auth.Value=1 Then

sSNTAuth="T"
Else

SNTAuth="F"
End If

'For some reason, alogon will work using NTAuth, even if
the
‘checkbox isn't checked,
'So this code will stop that.
If chkUseNTAuth.Value=0 And txtUID.Text ="" And
XtPWD.Text="" Then
MsgBox "Invalid User ID or Password.", vbCritical,
"Connection Failed"
testNewConn = False
GoTo TestConnFailure
End If

‘Test the ability to start and connect to an MSDE or SQL
server
bResponseServer =
Constructors.New_MSDE(txtUID.Text, txtPWD.Text, _
txtServer.Text, HFACSMain.gStrDatabaseFileName, _
txtDatabase. Text, HFACSMain.gStrAppPath, _
HFACSMain.gStrAutoL ogon,
HFACSMain.gStriirstRun, _
SNTAuth, HFACSMain.gStrTypeDB)
bResponseServer = oM SDE.startM SDE

'Check for aremote connectionto SQL 2k . . . if thisisa

‘remote connection attempt, and it works, then no copy is

'needed, so just quit this function and return true.

If gblnNoCopyNeeded = True Then testNewConn = True;
GoTo ExitSub

If bResponseServer = True Then
‘Now test for the existance of the database
bResponseDatabase = oM SDE.databaseExists

If bResponseDatabase = True Then

tetNewConn = True
Else

306

'Finally, test to seeif the SQL server islocal or
remote.
If txtServer.Text = "(local)" Then
testNewConn = True
bWarningFlag = True
Else
Screen.MousePointer =0
MsgBox "The server you specified exists, but it is
not" &
" on the local machine and the database you
specified" & _
"isnotinstaled." & Chr(13) & Chr(13) & _
"This program cannot create adatabase on a
machine" & _
"other than thelocal machine.", vbCritical, _
"Connection Failed"
testNewConn = False
End If
End If
End If

ExitSub:
Screen.MousePointer = 0
Set oM SDE = Nothing

307

TestConnFailure:

Screen.MousePointer = 0

frmODBLogon.IblAction.Visible = False 'Hide the connect
message

frmODBL ogon.IblAction.Refresh

frmODBL ogon.gifNetwork.Visible = False 'Hide animated
GIF

Exit Function

StartError:
Screen.MousePointer = 0

MsgBox "Destination host unreachable. The server may
not" &

"be started or you may haveto build a System DSN." &
Chr(13) & Chr(13) & _

"The detailed error messageis. frmODBLogon- " &
Err.Description & _

Chr(13) & Chr(13) & "Error Number: " & Err.Number,

vbOKOnly + vbCritical, "Connection Failed"
Resume ExitSub

End Function

FORMCLASS-Wait

Option Explicit

FORM DESCRIPTION

'Class Name: frmWait.frm

'Author: Pat Flanders & Scott Tufts

‘Thisclassis responsible for showing a status bar capable of
'pausing the number of seconds specified by
'HFACSMain.gIintTimeToWait and displaying the message
contained

'in HFACSMain.gStrTextM essage.

'References:

' - Microsoft Windows Common Controls 6.0
"NOTE: See function headers for internal component
references.

TR AR A KK A KR A IR A AR A IR A IR A IR A I A Ak Ak khkhkkhkhkkhkhkkhkhkkkkkx

FUNCTIONS

TRA A KA AR A KR A AR A IR A IR A IR A IR A I A A kA hkhkhkhkhkkhkhkkhkhkkkkkx

'Function/Sub Name: Form_GotFocus()

'‘Description: This sub reads the values contained in the
global

'variables to determine how long to show itself and what
message

'to display.

'Input: None
'‘Output: None

'References:
' - HFACSMain.bas

"##Model|d=3B294D0F0138

Private Sub Form_GotFocus()

guaStatus.Vaue=0
guaStatusMax = HFACSMain.gintTimeToWait

Screen.MousePointer = vbHourglass

Dim PauseTime
Dim Start
Dim i As Integer

'Retrieve the duration from the global variable
PauseTime = HFACSMain.gintTimeToWait

Start = Timer ' Set start time.

Do While Timer < Start + PauseTime
guaStatus.Value = Abs(Timer - Start)
DoEvents ' Yield to other processes.

Loop

Screen.MousePointer = vbDefault

Unload Me

End Sub

:Function/Sub Name: Form_Load()

'Description: This sub reads the values contained in the
?/l;ti)gblesto determine the message to display on the form.
:I nput: None

‘Output: None

'References:
' - HFACSMain.bas

'##Model|d=3B294D0F0167
Private Sub Form_L oad()

frmWait.Ibl Action.Caption =
HFACSMain.gStrTextM essage

End Sub

MODUL E-Constructors

Option Explicit

MODULE DESCRIPTION

'Module Name: Constructors.bas

'‘Author: Pat Flanders & Scott Tufts

"Thismodule definesfunctionsthat pair creation of new
object

'instances using the reusable global objects defined in
HFACSMain

‘with acall to an init() function of the associated class. In
this

'manner, these functionscan act as psuedo-constructors that
are

'capable of passing arguments -- afeature not availablein
Visud
'Basic 6.0.

Ykkkkkkkkhkkkkhkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx

' FUNCTIONS

Thkkkkkkkkhkkkkhkkkkhkkhkkhkkkhkkkhkhkkhhkhkkhkhkkkhkhkkhkkkhkhkhkhkkhkkkxkx

'Function/Sub Name: New_INIFile()

'Description: This function acts as a psuedo-constructor. It
'creates anew INIFlle object and calsthe INIFile.init()
function,

'passing desired parameters to ensure a consistent state.

'Input:

' oFileName - String value of representing the name of the
' the..ini file to manipulate.

‘Output: None

'References: INIFilecls

'##Model|[d=3B294D 140138
Public Function New_INIFile(sFileName As String)

Set oINIFile = New INIFile

'Set the INIFile class instance to aways use the global ini
‘filename for read/write operations

olNIFilelnit gINIFILENAME

End Function

'Function/Sub Name: New_|NIFileController()

'Description: This function acts as a psuedo-constructor. It
‘creates anew INIFlleController object and callsthe
'INIFileControlle.init() function, passing desired parameters
'to ensure a consistent state.

309

'Input: Currently, none. Future implementation may require
' parameters, so this code remains.

'‘Output: None

'References: INIFilecls

"##Model|[d=3B294D140177
Public Function New_INIFileController()

Set ol NIFileController = New INIFileController
olNIFileController.Init

End Function

"Function/Sub Name: New_HFACSConnection()

'Description: This function acts as a psuedo-constructor. It
‘creates a new HFACSConnection object and calls the
'HFACSConnection.init() function, passing desired
parameters

'to ensure a consistent state.

'Input:

' sUser - Theuser ID

' sPassword - Theuser password

' sSvrName - The name of the MSDE or SQL Server

' sMDFName - The name of the .mdf file containing the
' database.

' sDBName - The name of the database

' slnstDirectory - The application path

' sAutomaticLogon - Toggleto log on with/without prompt

' sFirsRunCheck - Toggle for determining if thisisthefirst
run

' after an update.

' SNTAuth - Togglefor determining if NT
authentication
' should be used for logon attempts.
' sTypeDB - Thetype of DB this program will
represent
' (mil, civ, or both).'

'‘Output: None

'References. HFACSConnection.cls

'##Model1d=3B294D1401A5

Public Function New_HFACSConnection(Optional sUser As
String, Optional sPassword As String, Optional sSvrName As
String, Optional SMDFName As String, Optional sSDBName
As String, Optional sinstDirectory As String, Optional
sAutomaticLogon As String, Optional sFirstRunCheck As
String, Optional SNTAuth As String, Optiond sTypeDB As
String)

Set oHFACSConnection = New HFACSConnection

'Set the MSDE class instance default values

If IsMissing(sUser) Then sUser = gSruID

If IsMissing(sPassword) Then sPassword = gStrPWD

If IsMissing(sSvrName) Then sSvrName =
gStrServerName

If IsMissing(sMDFName) Then sSMDFName =
gStrDatabasefileName

If IsMissing(sDBName) Then sDBName =
gStrDatabaseName

If IsMissing(sinstDirectory) Then sinstDirectory =
gStrAppPath

If IsMissing(sAutomaticL ogon) Then sAutomaticLogon =
gStrAutoLogon

If IsMissing(sFirstRunCheck) Then sFirstRunCheck =
gStrrirstRun

If IsMissing(SNTAuth) Then SNTAuth = gStrNTauth

If IsMissing(sTypeDB) Then sTypeDB = gStrTypeDB

oHFACSConnection.Init sUser, _
SPassword, _
sSvrName, _
SMIDFName, _
sDBName, _
sinstDirectory, _
sAutomaticLogon, _
sFirstRunCheck, _
SNTAUth, _
STypeDB

End Function

'Function/Sub Name: New_MSDE()

'Description: This function acts as a psuedo-constructor. It
‘creates anew MSDE object and calls the MSDE.init()
function,

'passing desired parametersto ensure a consistent state.

'Input:

" SUser - Theuser ID

' sPassword - Theuser password

' sSvrName - Thename of the MSDE or SQL Server

' sMDFName - The name of the .mdf file containing the
' database.

' sDBName - The name of the database

' slnstDirectory - The application path

' sAutomaticLogon - Toggleto log on with/without prompt

' sFirgRunCheck - Togglefor determining if thisisthe first
run

' after an update.

' sNTAuth - Toggle for determining if NT
authentication
' should be used for logon attempts.
' sTypeDB - Thetype of DB this program will

represent

310

' (mil, civ, or both).'
‘Output: None

'References: MSDE.cls

"##Model | d=3B294D 140290

Public Function New_MSDE(Optional sUser As String,
Optional sPassword As String, Optional sSvrName As String,
Optional sSMDFName As String, Optional SDBName As
String, Optional sinstDirectory As String, Optional
sAutomaticLogon As String, Optional sFirstRunCheck As
String, Optional SNTAuth As String, Optiona sTypeDB As
String)

Set oMSDE = New MSDE

'Set the MSDE classinstance default values.

'Noticethat password remains"" if itismissing. This
forces

‘a prompted logon.

If IsMissing(sUser) Then sUser = gStrUID

If IsMissing(sPassword) Then sPassword =""

If IsMissing(sSvrName) Then sSvrName =
gStrServerName

If IsMissing(sMDHName) Then sSMDFName =
gStrDatabasefileName

If IsMissing(sDBName) Then sDBName =
gStrDatabaseName

If IsMissing(sinstDirectory) Then slnstDirectory =
gStrAppPath

If IsMissing(sAutomaticLogon) Then sAutomaticL ogon =
gStrAutoLogon

If 1sMissing(sFirstRunCheck) Then sFirstRunCheck =
gStrFirstRun

If IsMissing(sSNTAuth) Then SNTAuth = gStrNTauth

If IsMissing(sTypeDB) Then sTypeDB = gStrTypeDB

OMSDE.Init sUser, _
sPassword, _
sSvrName, _
SMDFName, _
sDBName, _
sinstDirectory, _
sAutomaticLogon, _
sFirstRunCheck, _
SNTAuth, _
sTypeDB

End Function

MODULE-HFACSMain

Option Explicit

MODULE DESCRIPTION

'Module Name: HFACSMain.bas

'Author: Pat Flanders & Scott Tufts

"Thismoduleis accessibleto all classes and formsin the
project.

'It contains declarations for all global variables used to pass
‘values between forms and instances of classes.

'References For The Entire Component:

' - Microsoft Data Formating Object Library 6.
' - Microsoft ActiveX DataObjects 2.5 Library
' - Microsoft SQLDMO Object Library

' - Microsoft Scripting Runtime

' - GIF89 1.0 (For animated Gl Fs on Forms)

' - The HFACSFTP.exe ftp server.

Tkkkkkhkkkkhkkhkkhkkhkkhkkhkhhkhkhhkhhhkhhhkhhhhhhkhhhkhhhkhdhkhhhhixkx

' GLOBAL VARIABLES

Tkkkkkkkhkkhkkkhhkhhkhkhhkhhkhhhhhhhhhhhhhhhhhhkhhhhhhhhhkxkx

‘Thisvariable is used by HFACSMain.Main() for initializing
theentire

‘component. Itisrequired for al compiled DLLs, but not
used for

'else.

"##Model|d=3B294CE9034B

Public gdatServerStarted As Date

'Constant variableto hold the name of the..ini file.
'##Model | d=3B294CEA007D
Globa Const gINIFILENAME As String = "hfacs”

'Reusable object variables. These variables are used over and
over

'by classes and forms. They are created and destroyed within
the

'same function whenever possible.

'Reusable object variable for the INI file
'##Model1d=3B294CEB0010
Global olNIFile AsINIFile

'Reusable object variable for the INI file control class
'#Model|d=3B294CEC02C1
Global olNIFileController As INIFileController

'Reusable object variable for the HFACSConnection class
"##Model|[d=3B294CEEQ01A5
Global oHFACSConnection As HFACSConnection

"##M odel | d=3B294CFO006E

311

Globa oM SDE As M SDE 'Reusable object variable for the
MSDE Class

'Reusable object variable for the UpdateController Class
"##Model|d=3B294CF1032D
Global oUpdateController As UpdateController

'Variableto hold the path to the Windows system directory
"##Model | d=3B294CF202CE

Global gStrFileName As String 'The name of the system
directory

'INI file declarations. Each of these variables represents an
entry

'inthe.ini file. Thesevaluesarethe core of much of the

‘of this component and as such arevisibleto all formsand
classes.

"##Model|[d=3B294CF2031C
Globa gStrUID As String The user ID

'##Model | d=3B294CF2036B
Globa gStrPWD As String 'The user password

'##Model|d=3B294CF203A9
Global gStrServerName As String "The name of the MSDE
or SQL Server

"##Model | d=3B294CF3001F
Global gStrDatabaseFileName As String 'The name of the
mdf

"##M odel | d=3B294CF3006D
Global gStrDatabaseName As String ‘The name of the
database

'##Model | d=3B294CF300BB
Global gStrAppPath As String "The application path

"###Model | d=3B294CF30109
Global gStrAutoLogon As String 'Toggle to logon without
prompt

"Togglefor determining thefirst time the program has been
run.

"##Model | d=3B294CF30157

Global gStrFirstRun As String

"Toggle for determining if NT authentication should be used
for

'logon attempts.

'#Model|d=3B294CF301A5

Global gStrNTauth As String

"Thetype of DB this program will represent (mil, civ, or
both).

'##Model| d=3B294CF301F4

Global gStrTypeDB As String

'Global variable to hold the value of the current
connectionstring
"##Model | d=3B294CF30242

Global gTheConnectionString As String

'Global variableto hold the value of the SQL Server
subdirectory

Global gSQL ServerPath As String

'Flags for passing success or failure of form operations

'Flag a success/failure of a prompted logon
"##M odel | d=3B294CF30290
Global gblnPromptedL ogonSuccess As Boolean

'Flag a success/failure of an FTP update attempt

‘##Model1d=3B294CF302DE
Global ghlnFTPSuccess As Boolean

'Flags for passing strings and integer values between forms

'‘Message for label on frmWait. Allows you to change the
messagefrom

‘any location in this component.
'##Model|d=3B294CF3032C

Global gStrTextMessage As String

‘Amount of time for frmWait to count. Allowsyou to set the
number

‘of seconds for frmWait to actually wait.
"##Model|[d=3B294CF3037A

Global gIntTimeToWait As Integer

'Reusable variable for counters throughout the component
'##Model| d=3B294CF303C8
Global glntCounter As Integer

'Flag for indicating no copy is necessary. Thisisrequired
‘when making a connection to aremote host because the SQL
Server

'2000 version of SQLDMO won't connect to aremote host.
To work

‘around this, an ADO connection is attempted. |If an ADO
connection

‘succeeds, then the database exists on the server being
connected

'to, SO no copy isheeded . . . and thisflag is set.

'##Model | d=3B294CF4002E

Globa ghlnNoCopyNeeded As Boolean

Tk Ak AKAAAK A AR A IR A I AR I AR A I A A hhhkhhhkhkhhkhkhhkhkhkhkkhkhkhkxkx

GLOBAL UTIILITY FUNCTIONS

312

TRA AR A AR A IR A IR A IR A IR A A Ak k ko khkhkhkhkhkhkkhkkkkx

'Function/Sub Name: Main()

'‘Description: This code is executed when the component
darts, in

'response to the first object request. It isthe "Main"
procedure

'responsible for initializing the entire component and is
reguired

'for al compiled DLLs.

'Input: None
‘Output: None

'References. None

"##Model | d=3B294CF4006D
Sub Main()

gdatServerStarted = Now()
Debug.Print "
Debug.Print "Executing Sub Main . . ."

End Sub

"Function/Sub Name: 1sOpen()

'Description: Determinesif aformisopen or not. Useful for
‘determining when screen refreshes are needed.

'Input: String representing the name of the form to be
checked.

'‘Output: Trueif theformisopen, otherwise false.

'References. None

"##M odel | d=3B294CF4009C
Public Function IsOpen(szName As String) As Boolean

ISOpen = (SysCmd(acSysCmdGetObjectState, acForm,
szName) <> 0)

End Function

APPENDIX H. CLIPBOARD UTILITY

CLASS-clsClipboard

Option Explicit

' CLASS DESCRIPTION

'Class Name: clsClipboard

‘Author: Pat Flanders & Scott Tufts

'Description: The Access 2000 VBA IDE does not allow
direct access

'to the "clipboard” object. This classwrapsthe functionality
'of parts of the clipboard object in VB 6.0.

'References: None
'NOTE: See function headers for internal component

references.
T

Tkkkkhkhkhkhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhkkkkkk

' FUNCTIONS

Tkkkkkhkkkkhkkkhkhkkhkkhkhkhkhkhhkhhkhkhhkhhhkhhhhhhkhhhkhhhkhhhkhhhhixkx

313

"Function/Sub Name: clipOutL andscape()

'Description: Printsthe contents of the Windows clipboard
'Horizontally on a printed page.

'Input: None
'Output: Success or failure.

'References. None

Public Function clipOutLandscape() As Boolean
On Error GoTo StartError
Printer.Orientation = vbPRORL andscape
Printer.Print" "
Printer.PaintPicture Clipboard.GetData(), 0, 0
Printer.EndDoc
Printer.Orientation = voPRORPortrait

clipOutLandscape = True

THISPAGE INTENTIONALLY LEFT BLANK

314

APPENDIX |. FTP SERVER

CLASS-cFTP

Option Explicit

CLASS DESCRIPTION

'ClassName: cFTP

'‘Author: Chris Eastwood, July 1999. Modified by Pat
Flanders &
'Scott Tufts.

'‘Description: Provides FTP functionality in a separate
process.

"This classwrapsthe functionality of the Win32
Winlnet.DLL

'References: Winlnet.dll viaAPI cals - do not reference
from
'the VB IDE.

Tkkkkhkhkhkhkhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhkkkkkk

' DECLARES

Tkkkkkhkkkhkkkhkkhkhhhkhhhkhhhkhkhhkhhhkhhhhhhhhhhhhkhhhhkhkxkx

Private Declare Sub Sleep Lib "kernel32" (ByVa
dwMilliseconds As Long)

Dim SaveCBK AscFTPCBK
Dim frmTimer AsfrmTimer

Private Const MAX_PATH = 260

Private Type FILETIME
dwLowDateTime As Long
dwHighDateTime As Long

End Type

Private Type WIN32_FIND_DATA
dwFileAttributes As Long
ftCreationTime As FILETIME
ftLastAccessTime AsFILETIME
ftLastWriteTime ASFILETIME
nFileSizeHigh AsLong
nFileSizeLow As Long
dwReserved0 As Long
dwReservedl AsLong
cFileName As String * MAX_PATH
cAlternate As String * 14

End Type

Private Const ERROR_NO_MORE_FILES =18

Private Declare Function InternetFindNextFile Lib
"wininet.dll" Alias"InternetFindNextFileA" (ByVa hFnd
AsLong, IpvFindDataAs WIN32_FIND_DATA) AsLong

315

Private Declare Function FtpFindFirstFile Lib "wininet.dll"
Alias "FtpFindFirstFileA" (ByVal hFtpSession As Long,
ByVal IpszSearchFile As String, IpFindFileData As
WIN32_FIND_DATA, ByVa dwHags As Long, ByVa
dwContent AsLong) AsLong

Private Declare Function FtpGetFile Lib "wininet.dll" Alias
"FtpGetFileA" (ByVa hFtpSession As Long, ByVal
IpszRemoteFile As String, ByVal IpszNewFile As String,
ByVa fFaillfExists As Boolean, ByVal
dwFlagsAndAttributes As Long, ByVa dwFlags As Long,
ByVa dwContext As Long) As Boolean

Private Declare Function FtpPutFile Lib "wininet.dll" Alias
"FtpPutFileA" (ByVa hFtpSession AsLong, ByVal

IpszL ocalFile As String, ByVd IpszRemoteFile As String,
ByVa dwFlags AsLong, ByVd dwContext AsLong) As
Boolean

Private Declare Function FtpSetCurrentDirectory Lib
"wininet.dll" Alias"FtpSetCurrentDirectoryA" (ByVa
hFtpSession AsLong, ByVd IpszDirectory As String) As
Boolean

" Initializes an application's use of the Win32 Internet
functions

Private Declare Function InternetOpen Lib "wininet.dll"
Alias"InternetOpenA" (ByVal sAgent As String, ByVal
|AccessType As Long, ByVa sProxyName As String, ByVa
sProxyBypass As String, ByVal IFlags As Long) AsLong

"Useregistry access settings.

Private Const INTERNET_OPEN_TYPE_DIRECT =1
Private Const INTERNET_OPEN_TYPE_PROXY =3
Private Const INTERNET_INVALID_PORT_NUMBER =0

Private Const FTP_TRANSFER TYPE ASCII = &H1
Private Const FTP_TRANSFER_TYPE_BINARY = &H2
Private Const FILE_ATTRIBUTE_NORMAL = &H80
'Added

Private Const INTERNET_FLAG_PASSIVE = & H8000000

Private Declare Function InternetConnect Lib "wininet.dll"
Alias"InternetConnectA" (ByVa hinternetSession AsLong,
ByVal sServerName As String, ByVal nServerPort As
Integer, ByVal sUserName As String, ByVal sPassword As
String, ByVal IService As Long, ByVal IFlagsAs Long,
ByVal IContext AsLong) As Long

Private Const ERROR_INTERNET_EXTENDED_ERROR
=12003

Private Declare Function InternetGetL astResponselnfo Lib
"wininet.dll" Alias" InternetGetL astResponsel nfoA"
(IpdwError As Long, ByVal IpszBuffer As String,
IpdwBuUfferLength As Long) As Boolean

' Type of serviceto access.
Private Const INTERNET_SERVICE_FTP=1

‘private Const INTERNET_SERVICE_GOPHER =2
‘private ConstINTERNET_SERVICE_HTTP=3

Private Const INTERNET_FLAG_RELOAD =

& H80000000

Private Const INTERNET_FLAG_KEEP_CONNECTION =
& H400000

Private Const INTERNET_FLAG_MULTIPART =

& H200000

Private Declare Function FtpOpenFile Lib "wininet.dll" Alias
"FtpOpenFileA" (ByVal hFtpSession AsLong, ByVal
sFileName As String, ByVal |Access AsLong, ByVd IFlags
AsLong, ByVal IContext AsLong) AsLong

Private Declare Function FtpDeleteFile Lib "wininet.dll"
Alias "FtpDeleteFileA" (ByVal hFtpSession As Long, ByVal
|pszFileName As String) As Boolean

Private Declare Function FtpRenameFile Lib "wininet.dll"
Alias"FtpRenameFileA" (ByVa hFtpSession As Long,
ByVal sExistingName As String, ByVa sNewName As
String) As Boolean

' Closes asingle Internet handle or a subtree of Internet
handles.

Private Declare Function InternetCloseHandle Lib
"wininet.dll" (ByVa hinet AsLong) As Integer

' Our Defined Errors

Public Enum errFtpErrors
errCannotConnect = vbObjectError + 2001
errNoDirChange = vbObjectError + 2002
errCannotRename = vbObjectError + 2003
errCannotDelete = vbObjectError + 2004
errNotConnectedToSite = vbObjectError + 2005
errGetFileError = vbObjectError + 2006
errlnvalidProperty = vbObjectError + 2007
errFatal = vbObjectError + 2008

End Enum

' File Transfer types

Public Enum FileTransferType
ftAscii = FTP_TRANSFER_TYPE_ASCII
ftBinary = FTP_TRANSFER_TYPE_BINARY
End Enum

' Error messages

Private Const ERRCHANGEDIRSTR As String = "Cannot
Change Directory to %s. It either doesn't exist, or is
protected”

Private Const ERRCONNECTERROR As String = "Cannot
Connect to %s using User and Password Parameters'

Private Const ERRNOCONNECTION As String = "Not
Connected to FTP Site"

Private Const ERRNODOWNLOAD As String = "Couldnt
Get File %s from Server"

Private Const ERRNORENAME As String = "Couldn't
Rename File %s"

Private Const ERRNODELETE As String = "Couldn't Delete
File %s from Server"

316

Private Const ERRALREADY CONNECTED As String =

"Y ou cannot change this property while connected to an FTP
server”

Private Const ERRFATALERROR As String = "Cannot get
Connection to Winlnet.dll !"

' Session Identifier to Windows

Private Const SESSION As String = "CGFtp Instance”
"Our INET handle

Private mlINetHandle AsLong

' Our FTP ConnectionHandle

Private mlConnection AsLong

' Standard FTP propertiesfor this class
Private msHostAddress As String
Private msUser As String

Private msPassword As String

Private msDirectory As String

'Passed in from HFACS.DLL

Private ServerFileAndPath As String

Private DestinationFileAndPath As String
Private TransferType As FileTransferType

Tkhk KK A KKK KKK KKK KK A KKK IR A IR A I A A h A A dhkhkhkhkhkhkkhkhkkhkhkhkkkx

FUNCTIONS

Tkhk KKK KKK KKK KK A IR A KA A IR A IR A I A A h A A hhkhkhkhkhkhkkhkdhkhkhkhkkx

'Function/Sub Name: Initiaize()
:Descri ption: Opens an Internet session.
'Input: None

:Output: None

'References. None

Private Sub Class_Initialize()
' Create Internet session handle

mlINetHandle = InternetOpen(SESSION,
INTERNET_OPEN_TY PE_DIRECT, vbNullString,
vbNullString, 0)

If mlINetHandle=0 Then
miConnection =0
Err.Raise errFatal, "CGFTP::Class _Initialise”,
ERRFATALERROR
EndIf

miConnection =0

End Sub

:Functi on/Sub Name: Terminate()
:Dw:ription: Kills an Internet session.
:Input: None

:Output: None

'References. None

Private Sub Class Terminate()
" Kill off any connection

If miConnection <> 0 Then
InternetCloseHandle mlConnection
End If

' Kill off API Handle

If mlINetHandle <> 0 Then
InternetCloseHandle miINetHandle

End If

miConnection =0

mlINetHandle= 0

End Sub

'Function/Sub Name: Connect()
'‘Description: Connect to the FTP server.

'Input:
' -Host - IPornameof host
' -User -UserID

- Password - Password for FTP logon

'‘Output: Success or failure

'References. None

Public Function Connect(Optional Host As String, _
Optional User As String, _
Optional Password As String) As Boolean

' Connect to the FTP server
On Error GoTo vbErrorHandler

Dim sError As String

" If we already have a connection then raise an error

If mlConnection <> 0 Then
On Error GoTo 0
Err.Raise errlnvaidProperty, "CGFTP::Connect”, "Y ou
are aready connected to FTP Server " & msHostAddress
Exit Function
End If
' Overwrite any existing propertiesif they were supplied in
the

317

' arguments to this method

If Len(Host) > 0 Then
msHostAddress = Host
End If

If Len(User) >0 Then
msUser = User
End If

If Len(Password) >0 Then
msPassword = Password
End If

' Connect !

If Len(msHostAddress) = 0 Then
Err.Raise errlnvalidProperty, "CGFTP::Connect”, "No
Host Address Specified!"
End If

mlConnection = InternetConnect(mlINetHandle,
msHostAddress, INTERNET_INVALID_PORT_NUMBER,

msUser, msPassword, INTERNET_SERVICE_FTP, 0,
0)

' Check for connection errors

If mlConnection =0 Then
sError = Replace(ERRCONNECTERROR, "%s",
msHostAddress)
On Error GoTo 0
sError = sError & vbCrLf &
GetINETErrorMsg(Err.LastDIIError)
Err.Raise errCannotConnect, "CGFTP::Connect", sError
End If

Connect = True
Exit Function
vbErrorHandler:
Err.Raise Err.Number, "cFTP::Connect", Err.Description

End Function

:Function/Sub Name: Disconnect()
'‘Description: Disconnect, only if connected
:Input: None

'Output: Success or failure

'References. None

Public Function Disconnect() As Boolean

' Disconnect, only if connected !

On Error Resume Next

If miConnection <> 0 Then
InternetCloseHandle mlConnection
miConnection =0

Else
'Err.Raise errNotConnectedToSite,

"CGFTP::Disconnect”, ERRNOCONNECTION

End If

msHostAddress ="

msUser ="

msPassword ="

msDirectory ="

End Function

'Function/Sub Name: Disconnect()
'Description: Disconnect, only if connected

'Input:
' - ServerFileAndPathin -+ - Name of FTP server
- DedtinationFileAndPathin - Path to savefileto
' - TransferTypeln - Binary or Ascii
- cbk As cFTPCBK - For use with call back

'‘Output: Success or failure

'References. None

Sub StartGetFTP(ByVa ServerFileAndPathin As String, _
ByVal DestinationFileAndPathin As String, _
Optional TransferTypeln AsFileTransferType = ftAscii,

Optional cbk As cFTPCBK)

ServerFileAndPath = ServerFileAndPathin
DestinationFileAndPath = DestinationFileAndPathin
TransferType = TransferTypeln

Set SaveCBK = cbk
' activate the timer that will restart thisthread
Set frmTimer = New frmTimer
With frmTimer
Set .Owner = Me
.TimerLl.Interval = 100
.Timerl.Enabled = True
End With

End Sub

'Function/Sub Name: GetFile()

'‘Description: Get the specified file to the desired location
using

'the specified file transfer type

'Input: None

'Output: Success or failure

'References. None

318

Public Function GetFile() As Boolean

' this code is executed when the timer fires for the first
time

" unload the form and destroy it completely

Unload frmTimer

Set frmTimer = Nothing

Dim bRet As Boolean

Dim sFileRemote As String
Dim sDirRemote As String
Dim sFileLoca As String
Dim sTemp As String
Dim|Pos AsLong

Dim sError As String

On Error GoTo vbErrorHandler
" If not connected, raise an error

If miConnection =0 Then
On Error GoTo 0
Err.Raise errNotConnectedToSite, "CGFTP::GetFile",
ERRNOCONNECTION
End If

' Get thefile

DoEvents

bRet = FtpGetFile(mlConnection, ServerFileAndPath,
DestinationFileAndPath, False,
FILE_ ATTRIBUTE_NORMAL, TransferType Or
INTERNET_FLAG_RELOAD, 0)

DoEvents

If bRet = False Then
sError = ERRNODOWNLOAD
sError = Replace(sError, "%s', ServerFileAndPath)
On Error GoTo 0
GetFile = False
Err.Raise errGetFileError, "CGFTP::GetFile", sError
End If

GetFile=True

"inform the client that the process has been completed
SaveCBK.Complete True

' IMPORTANT: destroy the referenceto the client

' so that it won't be kept alive forever

ExitSub:
Exit Function

Set SaveCBK = Nothing

vbErrorHandler:

GetFile= Fase

SaveCBK.Complete True

GoTo ExitSub

'Err.Raise errGetFileError, "cFTP::GetFile",
Err.Description

End Function

'Function/Sub Name: RemoteChDir()

"Description: Remote Change Directory Command through
WININET

'Input:

-sDir - Directory to changeto

'Output: Success or failure

'References: None

Private Sub RemoteChDir(ByVal sDir As String)
On Error GoTo vbErrorHandler

' Remote Change Directory Command through WININET

Dim sPathFromRoot As String
Dim bRet As Boolean
Dim sError As String

' Needs standard Unix Convention
sDir = Replace(sDir, “\", "/")
' Check for aconnection

If miConnection =0 Then
On Error GoTo 0
Err.Raise errNotConnectedToSite,
"CGFTP::RemoteChDir", ERRNOCONNECTION
Exit Sub
End If

If Len(sDir) =0 Then
Exit Sub
Else
sPathFromRoot = sDir
If Len(sPathFromRoot) = 0 Then
sPathFromRoot ="/"
End If
bRet = FtpSetCurrentDirectory(mlConnection,
sPathFromRoot)

" If we couldn't change directory - raise an error

If bRet = False Then
sError = ERRCHANGEDIRSTR
sError = Replace(sError, "%s", sDir)
On Error GoTo 0
Err.Raise errNoDirChange,

" CGFTP::ChangeDirectory", sError
End If
End If

Exit Sub
VvbErrorHandler:

Err.Raise Err.Number, "cFTP::RemoteChDir",
Err.Description

End Sub

'Function/Sub Name: GetINETErrorMsg()
'Description: Provide Error information from Winlnet.

'Input:

319

' - GetINETErrorMsg - Err Num
'Output: Detailed error message.

'References: None

Private Function GetINETErrorMsg(ByVal ErrNum As
Long) As String

Dim |Error As Long

DimlLen AsLong

Dim sBuffer As String

' Get Extralnfo fromthe Winlnet.DLL

If ErrNum = ERROR_INTERNET_EXTENDED_ERROR
Then

' Get Message Size and Number

InternetGetlL astResponsel nfo |Error, vbNullString, ILen
sBuffer = String$(ILen + 1, vbNullChar)

' Get Message

InternetGetL astResponsel nfo |Error, sBuffer, ILen
GetINETErrorMsg = vbCrLf & sBuffer
End If
End Function

Tkkkkkkhhhhhkhhhhhhhhhhhhhhhhhhhhhhkhhhhkkhhhrkhhhhk

" Public Property GET and LET statements follow

Tkkkkkhkkkhkkhkkhkhkkhkhkhkhkhhkhkhhkhhhkhhhkhhhkhhhkhhhhhhkhdhkhdhhixkx

Public Property Let Host(ByVa sHostName As String)
' Set the Host Name- only if not connected

If mIConnection <> 0 Then
Err.Raise errInvaidProperty, "ACNFTP:Host_L et",
ERRALREADY CONNECTED
End If
msHostAddress = sHostName
End Property

Public Property Get Host() As String
' Get Host Name

Host = msHostAddress
End Property

Public Property Let User(ByVa sUserName As String)
' Set the user - only if not connected

If mIConnection <> 0 Then
Err.Raise errinvalidProperty, "CGFTP::User_Let",
ERRALREADY CONNECTED
End If
msUser = sUserName
End Property

Public Property Get User() As String Public Property Let Directory(ByVa sDirectory As String)
' " Set the directory - only if connected

' Get the user information '
' On Error GoTo vbErrorHandler
User = msUser

End Property Dim sError As String
Public Property Let Password(ByVa sPassword As String) If Not (mlConnection = 0) Then
' RemoteChDir sDirectory
' Set the password - only if not connected msDirectory = sDirectory
' Else
If mlConnection <> 0 Then On Error GoTo 0
Err.Raise errinvalidProperty, "CGFTP::Password_Let", Err.Raise errNotConnectedToSite,
ERRALREADY CONNECTED "CGFTP::Directory_Let", ERRNOCONNECTION
End If End If
msPassword = sPassword
End Property Exit Property
Public Property Get Password() As String vbErrorHandler:
' Get the password Err.Raise errNoDirChange, "CGFTP::Directory[Let]",

Err.Description
Password = msPassword

End Property End Property

'Fublic Property Get Directory() As String 'Public Property Get Connected() As Boolean

: Get the directory Are we connected to an FTP Server ? T/F
Directory = msDirectory Connected = (mlConnection <> 0)

End Property End Property

320

CLASS-cFTPCBK

Option Explicit

' CLASS DESCRIPTION

'Class Name: cFTPCBK
'‘Author: Pat Flanders & Scott Tufts.

'‘Description: Provides and Interface for callback to the HFACS.DLL
'Has no implementation.

'References. None

'Provide the errorcode back to HFACS
Sub Complete(ErrCode As Boolean)

End Sub

321

FORMCLASS-frmTimer

Option Explicit

Public Owner AscFTP

FORM DESCRIPTION

'Class Name: frmTimer

'‘Author: Pat Flanders & Scott Tufts.

'‘Description: Provides atimer to givethe callback class
'timeto instantiate.

'References. None

Private Sub Timerl_Timer()
' this procedure is executed only once per each invocation
' disadethetimer
Timerl.Interval =0
Timerl.Enabled = False
' yield to the companion instance
Dim bFTPResult As Boolean
bFTPResult = Owner.GetFile()
End Sub

322

APPENDIX J. INSTALL CD CODE

FORMCLASS-FrmMain

Option Explicit
HHHHHHHHHHHHHHHH

FORM DESCRIPTION

'ClassName: FrmMain.frm

:Author: Pat Flanders & Scott Tufts

‘This classis responsible for autorun of the installation CD
?)r;gvidi ng the user an infacefor the install.

'References: No special references required.

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

PROPERTIES

TRk kA kA A IR A IR AR A A A h kA hk ko hkkhhkhkhhkkhkhkkhkhkhkhkhhkkkkx

Private Declare Function ShellExecute Lib "shell32.dII"
Alias"ShellExecuteA" (ByVa hwnd AsLong, ByVal
IpOperation As String, ByVal IpFile As String, ByVal
IpParameters As String, ByVal IpDirectory As String, ByVal
nShowCmd AsLong) AsLong

Const SW_MAXIMIZE=3

Dim FileName As String
Dim WorkDir As String
Dim Error As Integer
Dim ErrorMsg As String

TRA AR A AR A IR A IR A IR A IR A ko khkhkh ok hkkhkhkhkhkhkhkkhkhkkkkx

FUNCTIONS

Tkkkkkhkhkhkkhhhhhhhhhhhhhkkk hhhkhkhkhhhhhhhkkkkkkkhkk

'Function/Sub Name: Form_Load()

'‘Description: Sets up theinitial menu, determines cd drive
letter,

‘and plays a sound.

'Input: None

‘Output: None

'References: None

Private Sub Form_L oad()

323

'Determine directory of the CD drive and store it for later
use.
WorkDir = CurDir$()
If Right$(WorkDir, 1) <>"\" Then
WorkDir = WorkDir & "\
End If

'‘Play a sound.

On Eror GoTo 0

On Error GoTo noSound
oleSound.DoVerb (1)

noSound:

' Change menu color when mouse is over button
Me.lblInstallM SDE.BackColor = & H8000000D
MelblInstallM SDE.ForeColor = & H8000000E

Me.blInstallHFACS.BackColor = & H8000000E
Me.lblInstallHFACS.ForeColor = & H80000008

Me.lblWin2K.BackColor = & H8000000E

MelblWin2K.ForeColor = & H80000008

Me.Ibl Description.Caption = "Microsoft SQL Server 2000
is the database engine required for HFACS ME to function.”
& Chr(13) & Chr(13) & _

"If Microsoft SQL Server 2000 is aready installed on this
machine, skip Step 1 and proceed to Step 2." & Chr(13) &
Chr(13) & _

"PREREQUISITES: None"

End Sub

:Functi on/Sub Name: 1bIWin2K_Click()

:Descri ption: Opensthe Step 3 HTML instruction page.
:I nput: None

:Output: None

'References: None

Private Sub IbIWin2K_Click()

FileName = "Step3.htm"
Screen.MousePointer = vbHourglass

On Error GoTo StartError

Error = ShellExecute(0, "open", FileName, ", WorkDir,
SW_MAXIMIZE)

‘MewaitFor3

Screen.MousePointer = vbDefault

Exit Sub

StartError:
Screen.MousePointer = vbDefault
MsgBox Err.Description
MsgBox Err.Number

End Sub

'Function/Sub Name: IblinstallHFACS_Click()

'‘Description: Launches the HFACS ME Installation
program.

'Input: None
'‘Output: None

'References. None

Private Sub Iblinstal HFACS Click()

FileName = "HFACS ME\setup.exe"
Screen.MousePointer = vbHourglass

On Error GoTo StartError

Error = ShellExecute(0, "open", FileName, ™, WorkDir,
SW_MAXIMIZE)

‘Me.waitFor3

Screen.MousePointer = vbDefault

Exit Sub

StartError:
Screen.MousePointer = vbDefault
MsgBox Err.Description
MsgBox Err.Number

End Sub

'Function/Sub Name:
' - IblWin2K_MouseMove
- IblInstalHFACS_MouseMove
' - IblInstalIMSDE_MouseMove
'‘Description: The next 3 functions are responsible for
changinge
'colors of menu buttonsin response to mouse movements.

‘Input: None
‘Output: None

'References. None

Private Sub 1blWin2K_MouseMove(Button As Integer, Shift
AsInteger, X AsSingle, Y As Single)

' Change menu color when mouseis over button
Me.blInstallM SDE.BackColor = & H8000000E
Me.lblInstallM SDE.ForeColor = & H80000008

MelblinstalHFACS.BackColor = & H8000000E
Me.lblinstallHFACS.ForeColor = & H80000008

Me.lblWin2K.BackColor = & H8000000D
Me.lblWin2K .ForeColor = & H8000000E

Me.lbIDescription.Caption = "If you are installing
HFACS ME on acomputer running Windows 2000 or
Windows NT, you must manually configure settingsto allow
users without 'Administrator' permissionstorunit." &
Chr(13) & Chr(13) & "Clicking this button will open alink
to an HTML document with detailed instructions outlining
how to make the necessary changes."

Me.lblDescription.Refresh
MelblinstalMSDE.Refresh
Me.lblInstallHFACS.Refresh
MellblWin2K .Refresh

End Sub

Private Sub IblInstad|HFACS_MouseMove(Button As
Integer, Shift AsInteger, X AsSingle, Y AsSingle)

' Change menu color when mouse is over button
MelblInstallM SDE.BackColor = & H8000000E
Me.lblInstallM SDE.ForeColor = & H80000008

Melbll nstal[HFACS.BackColor = & H8000000D
Me.lblInstalHFACS.ForeColor = & H8000000E

Me.lblWin2K .BackColor = & H8000000E
Me.lblWin2K.ForeColor = & H80000008

Me.IblDescription.Caption = "Installs the HFACSME
database and client application.” & Chr(13) & Chr(13) & _

"PREREQUISITES: " & Chr(13) & Chr(13) & " 1) IF
ACCESS 2000 ISNOT INSTALLED ON THIS
COMPUTER. There are NO prerequisites. Since you don't
have Access 2000, thisinstallation program will install a
special runtimeversion." & _

Chr(13) & Chr(13) & " 2) IFACCESS20001S
ALREADY INSTALLED ON THISCOMPUTER. The
HFACS ME program REQUIRES Office Service Release 1
or newer to function properly. Sinceyou aready have
Access 2000 installed, you must ensure that Microsoft Office
2000 Service Release 1 (or newer) isalso installed."

Me.lblDescription.Refresh
MelblinstalMSDE.Refresh
Me.blInstallHFACS.Refresh
Me.lblWin2K .Refresh

End Sub

Private Sub IblInstallM SDE_MouseM ove(Button As Integer,
Shift AsInteger, X AsSingle, Y As Single)

' Change menu color when mouse is over button
Me.lblInstallM SDE.BackColor = & H8000000D
Me.blInstallM SDE.ForeColor = & H8000000E

Me.lblinstal HFACS.BackColor = & H8000000E
Me.lblIngallHFACS.ForeColor = & H80000008

MelblWin2K .BackColor = & H8000000E

MelblWin2K .ForeColor = & H80000008

Me.lbl Description.Caption = "Microsoft SQL Server 2000
is the database engine required for HFACS ME to function."
& Chr(13) & Chr(13) & _

"If Microsoft SQL Server 2000 is aready installed on this
machine, skip Step 1 and proceed to Step 2." & Chr(13) &
Chr(13) & _

"PREREQUISITES: None"

Me.lblDescription.Refresh
Me.lblInstallM SDE.Refresh
Me.lblInstalHFACS.Refresh
Me.lblWin2K.Refresh

End Sub

:Functi on/Sub Name: |blInstalIMSDE_Click()
'‘Description: Launchesthe MSDE Installation program.
:Input: None

'‘Output: None

'References. None

Private Sub IblInstalIMSDE_Click()
'MsgBox "Run: " & WorkDir & "HFACS ME\setup.exe"
FileName = "M SDE\setup.exe”

Screen.MousePointer = vbHourglass
On Error GoTo StartError

Error = ShellExecute(0, "open”, FileName, ", WorkDir,
SW_MAXIMIZE)

'‘MewaitFor3

Screen.MousePointer = vbDefault
Exit Sub

StartError:

325

Screen.MousePointer = vbDefault
MsgBox Err.Description
MsgBox Err.Number

End Sub

'Function/Sub Name: waitFor3()

'‘Description: Waitsfor 3 seconds. For future use. Intended
to

'make the form invisible for 3 seconds after a button is
clicked.

'In thisway the user can't accidently click another button
while

'theaprogram is launching.

'Input: None
'‘Output: None

'References. None

Public Sub waitFor3()

Screen.MousePointer = vbHourglass

Dim PauseTime

Dim Start

Dimi As Integer

PauseTime = 3

Start = Timer ' Set start time.

Do While Timer < Start + PauseTime
DoEvents ' Yield to other processes.

Loop

Screen.MousePointer = vbDefault

End Sub

THISPAGE INTENTIONALLY LEFT BLANK

326

APPENDIX K. INVESTIGATION MODULE

CLASS-clFrmwWindow

Option Compare Database
Option Explicit

TR A K A AR A AR A AR A IR A IR A IR A IR A A h kA hkhkhkhkhkkhkhkkhkhkkkkx

' Type declarations
TRA AR A AR A IR A IR A IR A IR Ak ko khkhkhkhkhkhkhkhkkhhkkkkx
Private Type RECT 'RECT structure used for API calls.
Left AsLong
Top AsLong
Right AsLong
Bottom As Long
End Type

Private Type POINTAPI 'POINTAPI structure used for API
cals.

X AsLong

Y AsLong
End Type

XA AR A AR A IR A IR A IR A IR A Ak ko khhkhkhkkhkhkhkhkhkhkkkhkkkkx

' Member variables

Ak hhh kA h AR A AR Ak kA hhkkhhkkhhkhkhkhkhkkhkhkhkxhkhkkhkhkkkkkx
Privatem_hWnd AsLong ‘Handle of the window.
Private m_rctWindow AsRECT 'Rectangle describing the
sides of the last polled location of the window.

Tkhkkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhhhkhhrk

' Private error constants for use with RaiseError procedure

TR AR A KK A KR A KR A IR A IR A IR A IR A I A A Ak Ak khkhkkhkhkkhkhkkkhkkkkkx
Private Const m_ERR_INVALIDHWND =1

Private Const m_ERR_NOPARENTWINDOW = 2

TR A A KA AR A AR A AR A IR A IR A IR A IR A A h kA khkhkhkhkkhkhkkhkhkkkkkx

" AP function declarations

TRA AR A AR A IR A IR A IR A IR A Ak h ko khkhkkhkhkhkhkhkhkkhkhkkkkx
Private Declare Function apilswWindow Lib "user32" Alias
"Iswindow" (ByVa hwnd AsLong) AsLong

Private Declare Function apiMoveWindow Lib "user32"
Alias "MoveWindow" (ByVa hwnd AsLong, ByVal X As
Long, Byva Y AsLong, _

ByVa nWidth As Long, ByVa nHeight As Long, ByVva
bRepaint AsLong) AsLong

‘Moves and resizes a window in the coordinate system of
its parent window.

Private Declare Function apiGetWindowRect Lib "user32"
Alias "GetWindowRect" (ByVd hwnd AsLong, IpRect As
RECT) As Long

'After calling, the IpRect parameter contains the RECT
structure describing the sides of the window in screen
coordinates.

Private Declare Function apiScreenToClient Lib "user32"
Alias "ScreenToClient" (ByVa hwnd AsLong, IpPoint As
POINTAPI) As Long

'Converts |pPoint from screen coordinates to the
coordinate system of the specified client window.

327

Private Declare Function apiGetParent Lib "user32" Alias
"GetParent” (ByVa hwnd As Long) AsLong

'Returns the handle of the parent window of the specified
window.

' CLASS DESCRIPTION

'‘ClassName: clFormWindow.bas

'‘Author: Pat Flanders & Scott Tufts

'Description: Moves and resizesawindow in the coordinate
system
" of its parent window.

'References. None

Tkkkkkkkkhkkkkhkkkkhkkkhkkkhkkkhkkkhkhkhkhkkhkhkkhkhkhkhkhkhkkkhkkkkx

FUNCTIONS

Tkhk KK A KKK KKK KKK KK A KKK IR A IR A I A A h A A dhkhkhkhkhkhkkhkhkkhkhkhkkkx

'Function/Sub Name: RaiseError()

'Description: Raises a user-defined error to the calling
procedure.

‘Input: None
‘Output: None

'References. None

Private Sub RaiseError(ByVal IngErrNumber As Long,
ByVal strErrDesc As String)

ERR.Raise vbObjectError + IngErrNumber,
"clFormWindow", strErrDesc

End Sub

'Function/Sub Name: UpdateWindowRect()

'Description: Placesthe current window rectangle position (in
'pixels, in coordinate system of parent window) in
m_rctWindow.

'Input: None

'Output: None

'References. None

Private Sub UpdateWindowRect()
Dim ptCorner As POINTAPI

If m_hwWnd = 0 Or apilswindow(m_hWnd) Then
apiGetWindowRect m_hwnd, m_rctWindow
'm_rctWindow now holds window coordinates in screen
coordinates.

If Not Me.Parent Is Nothing Then
'If there is a parent window, convert top, left of
window from screen coordinates to parent window
coordinates.
With ptCorner
X =m_rctWindow.Left
.Y =m_rctWindow.Top
End With

apiScreenToClient Me.Parent.hwnd, ptCorner

With m_rctWindow
.Left = ptCorner.X
.Top = ptCorner.Y

End With

'If there is a parent window, convert bottom, right of
window from screen coordinates to parent window
coordinates.

With ptCorner

X =m_rctWindow.Right
.Y =m_rctWindow.Bottom
End With

apiScreenToClient Me.Parent.hwnd, ptCorner

With m_rctWindow
.Right = ptCorner.X
.Bottom = ptCorner.Y
End With
End If
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Sub

" Public readwrite properties follow

Public Property Get hwnd() AsLong
'Returns the value the user has specified for the window's
handle.

If m_hwWnd = 0 Or apilswindow(m_hWnd) Then
hwnd =m_hwnd
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

328

Public Property Let hwnd(ByVal IngNewVaue As Long)
'Sets the window to use by specifying its handle.
'Only accepts valid window handles.

If IngNewVaue = 0 Or apilswindow(IngNewVaue) Then
m_hwnd = IngNewVaue
Else
RaiseError m_ERR_INVALIDHWND, "Thevalue
passed to the hwnd property isnot avalid window handle."
End If

End Property

Public Property Get Left() AsLong
'Returns the current position (in pixels) of the left edge of the
window in the coordinate system of its parent window.

If m_hWnd = 0 Or apilswindow(m_hWnd) Then
UpdatewindowRect
Left = m_rctWindow.L eft
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hwnd & " isno longer valid."
End If

End Property

Public Property Let Left(ByVal IngNewValue As Long)
'Moves the window such that its |eft edge falls at the position
indicated

'(measured in pixels, in the coordinate system of its parent
window).

If m_hWnd = 0 Or apilswindow(m_hWnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hwnd, IngNewVaue, .Top,
.Right - .Left, .Bottom - .Top, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Get Top() AsLong
'Returnsthe current position (in pixels) of the top edge of the
window in the coordinate system of its parent window.

If m_hwnd = 0 Or agpilswindow(m_hWnd) Then
UpdatewindowRect
Top =m_rctWindow.Top
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property
Public Property Let Top(ByVal IngNewVaue As Long)

'Movesthe window such that its top edge falls at the position
indicated

'(measured in pixels, in the coordinate system of its parent
window).

If m_hwWnd = 0 Or apilswindow(m_hWnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hwnd, .Left, IngNewValue,
.Right - .Left, .Bottom - .Top, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Get Width() AsLong
'Returns the current width (in pixels) of the window.

If m_hwnd = 0 Or apilsWindow(m_hwWnd) Then
UpdateWindowRect
With m_rctWindow
Width = .Right - .Left
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Let Width(ByVa IngNewVaue As Long)
'Changes the width of the window to the value provided (in
pixels).

If m_hWnd = 0 Or apilsWindow(m_hwnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hWnd, .L€ft, .Top,
IngNewValue, .Bottom - .Top, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Get Height() AsLong
'Returns the current height (in pixels) of the window.

If m_hwnd = 0 Or apilsWindow(m_hWnd) Then
UpdatewindowRect
With m_rctWindow
Height = .Bottom- .Top
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

Public Property Let Height (ByVa IngNewVaue As Long)
'‘Changes the height of the window to the value provided (in
pixels).

If m_hwnd = 0 Or apilswindow(m_hWnd) Then
UpdateWindowRect
With m_rctWindow
apiMoveWindow m_hWnd, .Left, .Top, .Right - .Left,
IngNewVaue, True
End With
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hWnd & " isno longer valid."
End If

End Property

' Public read-only propertiesfollow

Public Property Get Parent() As clFormWindow
'Returns the parent window as a clFormwWindow object.
'For forms, this should be the Access MDI window.

Dim fwParent As New clFormwWindow
Dim IngHWnd As Long

If m_hWnd =0 Then
Set Parent = Nothing
Elself apilsWindow(m_hWnd) Then
IngHWnd = api GetParent(m_hWnd)
fwParent.hwnd = IngHWnd
Set Parent = fwParent
Else
RaiseError m_ERR_INVALIDHWND, "The window
handle" & m_hwnd & " isno longer valid."
End If

Set fwParent = Nothing

End Property

CLASS-INIFile

Option Explicit

CLASS DESCRIPTION

R

'‘ClassName: INIFile.cls

‘Author: Microsoft Corporation. Modified by Pat Flanders
% Scott Tufts

"This class creates .ini File objects used to create, delete, set,
‘and get valuesin astandard format Microsoft .ini file. It
:l::?fsto the Windows AP for efficiency.

'References. Windows API

'NOTE: See function headers for internal component
references.

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

PROPERTIES

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

"The name of theini fileto read
"##Model|d=3B294CFD03A9
Private msWbkName As String

'"API Wrapper Code - provided by Microsoft

"##M odel | d=3B294CFE0000

Private Declare FunctionWritePrivateProfileString Lib
"kernel32" Alias"WritePrivateProfileStringA" (ByVal
IpApplicationName As String, ByVal |pKeyName As String,
ByVal IpString As String, ByVad IpFileName As String) As
Long

'##Model|d=3B294CFEQOAB

Private Declare Function GetPrivateProfileString Lib
"kernel32" Alias"GetPrivateProfileStringA" (Byval
IpApplicationName As String, ByVal IpKeyName As Any,
ByVal IpDefault As String, ByVal IpReturnedString As
String, ByVal nSize As Long, ByVa IpFileName As String)
AsLong

"##Model|d=3B294CFE0196

Private Declare Function GetWindowsDirectory Lib
"kernel32" Alias "GetWindowsDirectoryA" (ByVal |pBuffer
As String, ByVa nSize AsLong) AsLong

Ykkkkkkkkhkkkkhkkkkhkkkkhkkhkkkhkhkkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx

' FUNCTIONS

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkhkkhkkhkkhkkhkhkhkhkhkkkhkhkhkhkhkkkkkhkkkkx

"Function/Sub Name: Init()

'Description: If aninstance of aclassis created using the
psuedo-

330

‘constructors from the Constructors.bas module, this function
is

‘called to passinitial values, thereby mimicking the bahavior
of

‘aconstructor with arguments. Passed in valuesare all
required, but

'the Constructors.New_INIFile() function automatically sets
'passed-in valuesto global variable valuesif they are left
‘blank.

'Input:
' sPassedinWorkBookName
manipulate

- Name of the.ini fileto

‘Output: None

'References:
' - Congtructors.bas

'##Model|[d=3B294CFE0213
Friend Sub Init(sPassedInWorkBookName As String)

msWhkName = sPassedInWorkBookName

End Sub

'Function/Sub Name: WriteTolniFile()

'‘Description: Write asection, key, and valueto an .ini file.

'Input:

' drSection - Nameof asection

' srkey - Name of akey

' drvaue - Nameof akey value

' drFileName - Nameof thefileto manipulate

'Output: Success or failure

'References. None

"##Model|d=3B294CFE0251

Friend Function WriteTol niFile(strSection As String, strkey
As String, strVaue As String, strFileName As String) As
Boolean

' Passin name of section, key, key value, and file name.
If WritePrivateProfileString(strSection, strkey, _
strVaue, striFileName) Then

WriteTolniFile = True

Else
MsgBox "Error writing to .ini file: " & Err.LastDIIError
WriteTolniFile = False

End If

End Function

'Function/Sub Name: Deletel ni Section()

'‘Description: Delete a section and al of its keysfrom an .ini
file.

'Input:
' drSection - Nameof asection
' drFileName - Name of thefileto manipulate

'Output: Success or failure

'References. None

"##Model|d=3B294CFE02DE
Friend Function Deletel ni Section(strSection As String,
strFileName As String) As Boolean

If WritePrivateProfileString(strSection, vbNullString, _
vbNullString, strFileName) Then
Deletel niSection = True
Else
MsgBox "Error deleting section from .ini file: " _
& Err.LastDIIError
Deletel niSection = False
End If

End Function

'Function/Sub Name: DeletelniKey()

'‘Description: Delete akey and its value from an .ini file.

'Input:
' drSection - Nameof asection
' drkey - Name of akey

' drFileName - Name of thefileto manipulate

'‘Output: Success or failure

'References. None

"##Model | d=3B294CFE033C
Friend Function Deletel niK ey(strSection As String, strkey
As String, strFileName As String) As Boolean

If WritePrivateProfileString(strSection, strkey, _
vbNullString, strFileName) Then
DeletelniKey = True
Else
MsgBox "Error deleting section from .ini file: " _
& Err.LastDIIError
DeletelniKey = False
End If

End Function

'Function/Sub Name: GetIniFileName()

'‘Description: Return name for .ini file. Name includes name
of

‘workbook fileand ".ini". File path can be made the Windows

directory.
'by uncommenting the code below

'Input: None
'Output: String path (e.g. C:\windows\HFACS.ini).

'References. None

'##Model|d=3B294CFE03A9
Friend Function GetlniFileName() As String

Dim strwWinDir As String
DimIngLen AslLong

' Create null-terminated string to passto
' GetWindowsDirectory.
' strwinDir = String$(255, vbNullChar)

" IngLen = Len(strWinDir)

' Return Windows directory.
GetWindowsDirectory strwWinDir, IngLen

' Truncate before first null character.
" strWinDir = Left(strWinDir, _
' InStr(strWinDir, vbNullChar) - 1)

"Return .ini file name.
' GetlniFileName = strwinDir & "\' & mswbkName &

in

".ini
GetlniFileName = App.Path & "\" & msWbkName & ".ini"

End Function

'Function/Sub Name: ReadFromIniFile()

'Description: Read avalue from an .ini file, given thefile
name,
'section, key, and default value to return if key is not found.

'Input:
' drSection - Nameof asection
" strkey - Name of akey

' grDefault - Default name of akey vaue
' grFileName - Name of the file to manipulate

'‘Output: Success or failure

'References. None

'##Model1d=3B294CFE03D8

Friend Function ReadFrominiFile(strFileName As String,
strSection As String, strKey As String, Optiona strDefault
As String ="") As String

Dim strVaue As String

" Fill string buffer with null characters.
strValue = String$(255, vbNullChar)

' Attempt to read value. GetPrivateProfileString
' function returns number of characterswritten
" into string.
If GetPrivateProfileString(strSection, strkey, _
strDefault, strvVaue, Len(strValue),
strFileName) > 0 Then
" If characters have been written into string, parse string
"and return.
strVaue = Left(strValue, InStr(strVaue, vobNullChar) -
1
ReadFrominiFile = strVaue
Else

' Otherwise, return a zero-length string.
ReadFrominiFile = strDefault End Function
End If

332

FORMCLASS-1-0-0-0-frm-SelectMishap

Option Compare Database
Option Explicit

FORM DESCRIPTION

'Class Name: 1-0-0-0-frm-SelectMishap

'‘Author: Pat Flanders & Scott Tufts

‘This classis displays al the Mishaps in the database an
alowsthe

'user to sort them by variousfields in order to select amishap
'to view or edit. It has buttons that allow initiation of anew
'‘Mishap or deletion of an existing mishap.

'References:

- 1-0-0-1-subFrm-SelectMishap
' - clFormWindow

- ez_Sizingrunctions
' - GlobaDeclarations

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

FUNCTIONS

A AR A AR A IR A IR A IR A IR A Ak bk khhkhkhkkhkhkhkhkhkhkkhhkkkkx

'Function/Sub Name: cmdDone_Click()
:Deacription: Closestheform.

'Input: None

:Output: None

'References. None

Private Sub cmdDone_Click()
DoCmd.Quit
End Sub

'Function/Sub Name: cmdViewMishap_Click()

:D@cri ption: Opens the mishap selected in the subform.
'Input: None

:Output: None

'References: Globa Declarations.gLngMishapToGet isa

globa variable
'holding the value of the mishap ID

Private Sub cmdViewMishap_Click()

333

On Error GoTo errorHandler
GlobalDeclarations.gLngMishapToGet =
MeManage Mishaps.Form![Mishapl D]
Me. TxtGloba Focus.Vaue =
Globa Declarations.gLngMishapToGet
MeVisble = False

Dim stLinkCriteria As String
stLinkCriteria="[MishaplD]=" &
Globa Declarations.gL ngMishapToGet
DoCmd.OpenForm "1-0-0-2-frm-EditMishap", , ,
stLinkCriteria
Exit Sub

errorHandler:
DoCmd.Besp

MsgBox "There are no Mishaps to select!", vbOKOnly +

vbExclamation, "Error"

End Sub

:FunctionlSub Name: cmdAdd_Click()
:D&cri ption: Opens the add mishap wizard.
'Input: None

:Output: None

'References. None

Private Sub cmdAdd_Click()

MeVisible = False
DoCmd.OpenForm "1-0-0-5-frm-AddMishap"

End Sub

'Function/Sub Name: ecmdKill_Click()

:Description: Del etes the mishap selected in the subform.
:Input: None

:Output: None

'References: Global Declarations.glngMishapToGet isa

global variable
'holding the value of the mishap 1D

Private Sub cmdKill_Click()

On Error GoTo errorHandler
GlobalDeclarations.gLngMishapToGet =
MeManage Mishaps.Form![Mishapl D]
Me. TxtGloba Focus.Vaue =
Globa Declarations.gLngMishapToGet

Dim response As Variant

DoCmd.Besp
response = MsgBox("Y ou are about to permanently delete
therecord for MISHAP#' & Me. TxtGloba Focus.Vaue& "
and dl itsrelated Factors." & Chr(13) & Chr(13) & "Itis
STRONGLY recommended that you do not delete mishaps
from the database because this removes al referencesof
them." & Chr(13) & Chr(13) & "Do you want to delete this
Mishap record despite thiswarning?', vbY esNo +
vbQuestion + vbDefaultButton2, " Permanently Delete
Mishap?')
If response = vbY es Then
DoCmd.SetWarnings False
DoCmd.OpenQuery "1-0-0-2-DeleteMishapAndFactors'
DoCmd.SetWarnings True
Me.Manage Mishaps.Requery

End If

Exit Sub
errorHandler:
DoCmd.Beep

MsgBox "There are no Mishapsto delete!", vbOKOnly +
vbExclamation, "Error"

End Sub

'Function/Sub Name: Form_Activate()

'Description: Update the menu bar and seeiif the subform
needsto

'be refreshed.

'Input: None

'‘Output: None

'References. None

Private Sub Form_Activate()

'Refresh the form if returning from a process that made it
dirty.
If Global Declarations.gFormNeedsRefresh = True Then
MeManage_Mishaps.Requery
Global Declarations.gFormNeedsRefresh = False
End If

End Sub

'Function/Sub Name: Form_Load()
'Description: Dynamically resizestheform to the users

screen
'resolution and then centersiit.

334

'Input: None
‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-0-frm-SelectMishap”
End Sub

'Function/Sub Name: Form_Open()

'Description: Updates the menu bar and sets the MainMenu
formto

'invisible so that the screeniseasier to view.

‘Input: None

‘Output: None

'References. None

Private Sub Form_Open(Cancel As Integer)

'On Emor Resume Next
Global Declarations.synchFileDBTypeToDbVaue

Me. TxtGloba Focus.Vaue =
Globa Declarations.gLngMishapToGet

'DoCmd.GoToControl "Manage_Mishaps'

End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
‘Output: None

'References:
' - clFormWindow

Public Sub MoveToCenter(ByVad strFormName As String)
Dim fwForm As New clFormWindow

With fwForm

.hwnd = Forms(strFormName).hwnd End With

"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) * Set fwForm = Nothing
0.6)
.Left = (.Parent.Width - .Width) / 2 End Sub

335

FORMCLASS-1-0-0-1-subfrm-SelectMishap

Option Compare Database '
Option Explicit ‘Output: None

FORM DESCRIPTION 'References: None

'ClassName: 1-0-0-1-subfrm-SelectMishap

Private Sub Frame97_AfterUpdate()

'‘Author: Pat Flanders & Scott Tufts
' If Me.Frame97 = 1 Then

'This classis used in aform/subform relationship with the If MetglDecending.Value =-1Then
'1-0-0-0-frm-SelectMishap form. It displays the mishapsin a Me.OrderBy = "[MishapDate] DESC"
'sortable order. Else
' Me.OrderBy = "[MishapDate] ASC"
'References: End If

- clFormWindow Me MishapDate.ForeColor = RGB(10, 140, 50)
' - ez_SizingFunctions Me.OrglD_FK.ForeColor = RGB(0, 0, 0)

- GlobalDeclarations Me.Aircraft FK.ForeColor = RGB(0, 0, 0)

' Me.Class_FK.ForeColor = RGB(0, 0, 0)

! Me.Locationl D_FK_.ForeColor = RGB(0, 0, 0)
Me.Type FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)

End If
Ykkkkkkkkhkkkkhkkkkhkkhkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkhkhkkhkhkkhkkkhkkkhkkkxkx If MeFrarn&7 = 2 Then
' FUNCTIONS If Me.tglDecending.Value =-1Then
Ykkkkkkkkhkkkkhkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx MeorderBy = "[Orng_FK] DE&"
Else
Me.OrderBy = "[OrgID_FK] ASC"
End If
! Me.MishapDate.ForeColor = RGB(0, 0, 0)
'Function/Sub Name: Form_Open() Me.OrglD_FK.ForeColor = RGB(10, 140, 50)
' Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
'‘Description: Sets color values for the columnsin the form as Me.Class FK.ForeColor = RGB(0, 0, 0)
well Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
‘asinitial sort order. Me.Type FK.ForeColor = RGB(0, 0, 0)
' Me.Mishapl D.ForeColor = RGB(0, 0, 0)
'Input: None End If
' If Me.Frame97 = 3 Then
‘Output: None If MetglDecending.Value =-1Then
' Me.OrderBy = "[Aircraft_FK] DESC"
'References: None Else
' Me.OrderBy = "[Aircraft_FK] ASC"
' End If
Private Sub Form_Open(Cancel As Integer) Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.tglDecending.Vadue=0 Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
Me.OrderBy = "[MishapDate] ASC" Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.MishapDate.ForeColor = RGB(10, 140, 50) Me.Locationl D_FK_.ForeColor = RGB(0, 0, 0)
Me.OrgID_FK.ForeColor = RGB(0, 0, 0) MeType FK.ForeColor = RGB(0, 0, 0)
MeAircraft_FK.ForeColor = RGB(0, 0, 0) Me.Mishapl D.ForeColor = RGB(0, 0, 0)
Me.Class FK.ForeColor = RGB(0, 0, 0) End If
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0) If Me.Frame97 =4 Then
Me.Type FK.ForeColor = RGB(0, 0, 0) If MetglDecending.Value =-1Then
Me.Mishapl D.ForeColor = RGB(0, 0, 0) Me.OrderBy = "[Class FK] DESC"
Else
End Sub Me.OrderBy ="[Class FK] ASC"
End If

Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)

'Function/Sub Name: Frame97_AfterUpdate() Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)

' Me.Class_FK.ForeColor = RGB(10, 140, 50)
'‘Description: Logic module that reactsto radio button clicks. MeLocationlD_FK.ForeColor = RGB(0, 0, 0)
Sorts Me.Type FK.ForeColor = RGB(0, 0, 0)

'the data on the form in the order specified. Me.Mishapl D.ForeColor = RGB(0, 0, 0)

' End If

'Input: None If Me.Frame97 =5 Then

336

If MetglDecending.Vaue=-1Then
Me.OrderBy = "[MishapL ocation] DESC"
Else
Me.OrderBy = "[MishapL ocation] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationID_FK.ForeColor = RGB(10, 140, 50)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 6 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Type FK] DESC"
Else
Me.OrderBy = "[Type FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
MeAircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(10, 140, 50)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If MeFrame97 = 7 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Mishapl D] DESC"
Else
Me.OrderBy = "[MishaplD] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(10, 140, 50)
End If

End Sub

'Function/Sub Name: IbiIMore_Click()

'Description: Reactsto the click of the "More..." box in each

row
‘of the datain the form. Opens aform that displays amore
detailed

'description of the mishap because these descriptions are too
big

'to fit in the datagrid of the form.

'Input: None
'‘Output: None

'References:
' - 1-0-0-3-PopUpFrm-MishapDescription

Private Sub IbIMore_Click()
Global Declarations.gStrDescription =
Me.lblDescription.Vaue

DoCmd.OpenForm "1-0-0-3-PopUpFrm-
MishapDescription”
End Sub

'Function/Sub Name: tglDecending_AfterUpdate()
'Description: Logic module that sortsthe dataon the formin
‘acending or descending order based on the state of the toggle
button.

'Input: None

'‘Output: None

'References. None

Private Sub tglDecending_AfterUpdate()

If MeFrame97 = 1 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[MishapDate] DESC"
Else
Me.OrderBy = "[MishapDate] ASC"
End If
Me.MishgpDate.ForeColor = RGB(10, 140, 50)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 2 Then
If Me.tglDecending.Value =-1Then
Me.OrderBy = "[OrgID_FK] DESC"
Else
Me.OrderBy ="[OrgID_FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(10, 140, 50)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If MeFrame97 = 3 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Aircraft FK] DESC"
Else
Me.OrderBy = "[Aircraft_FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(10, 140, 50)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB (0, 0, 0)
End If
If Me.Frame97 = 4 Then
If MetglDecending.Vaue=-1Then
Me.OrderBy = "[Class FK] DESC"
Else
Me.OrderBy ="[Class FK] ASC"

End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(10, 140, 50)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 =5 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[MishapL ocation] DESC"
Else
Me.OrderBy = "[MishapLocation] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.LocationID_FK.ForeColor = RGB(10, 140, 50)
MeType FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame9d7 = 6 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[Type_FK] DESC"
Else

338

Me.OrderBy = "[Type_FK] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
Me.Aircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class_FK.ForeColor = RGB(0, 0, 0)
Me.Locationl D_FK_.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(10, 140, 50)
Me.Mishapl D.ForeColor = RGB(0, 0, 0)
End If
If Me.Frame97 = 7 Then
If MetglDecending.Value =-1Then
Me.OrderBy = "[MishaplD] DESC"
Else
Me.OrderBy = "[MishaplD] ASC"
End If
Me.MishapDate.ForeColor = RGB(0, 0, 0)
Me.OrglD_FK.ForeColor = RGB(0, 0, 0)
MeAircraft_FK.ForeColor = RGB(0, 0, 0)
Me.Class FK.ForeColor = RGB(0, 0, 0)
Me.LocationlD_FK.ForeColor = RGB(0, 0, 0)
Me.Type_FK.ForeColor = RGB(0, 0, 0)
Me.Mishapl D.ForeColor = RGB(10, 140, 50)
End If

End Sub

FORMCLASS-1-0-0-2-frm-EditMishap

Option Compare Database
Option Explicit

FORM DESCRIPTION

'ClassName: 1-0-0-2-frm-EditMishap

'‘Author: Pat Flanders & Scott Tufts

‘Thisclassis used to edit mishaps and add factors. Itis
similar

'to the 2-0-1-2-subFrm-View mishaps class, but offersthe
additional

‘capability to edit the datain the underlying tables.

'References:
- 1-0-0-7-PopUpFrm-CodeMaintenance
' - 1-0-0-4-subFrm-Factors
- clFormWindow
' - ez_SizingFunctions
- GlobalDeclarations

Ykkkkkkkkhkkkkhkkkkhkkkkhkkkhkhkkhkkkhkhkhkkhkhkkkhkhkkhkhkhkkkhkkkkx

' FUNCTIONS

Tkkkkkkkkhkkkkhkkkkhkkkkhkkkhkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkkkkx

'Function/Sub Name: cmdCancel_Click()

‘Description: Closes the form undoing changesBUT ONLY
for events

'that have not already been refreshed. For example, if you
add

‘afactor, the entire form isrefreshed . . . so clicking cancel
‘cannot undo the addition of thefactor - you haveto usethe
‘delete button. Thisfunction isonly capble of undoing
actions

‘'made to controlsin the top portion of the form, and then,
only

'if arefresh has not yet been committed.

'Input: None
'Output: None

'References. None

Private Sub cmdCancel_Click()
On Error GoTo Err_cmdCancel_Click
DoCmd.DoMenultem acFormBar, acEditMenu, acUndo, ,
acMenuvVer70
DoCmd.Close

Exit_cmdCancel_Click:
Exit Sub

339

Err_cmdCancel_Click:
DoCmd.Close

End Sub

:Functi on/Sub Name: cmdCodeMaintenance_Click()
:D@cri ption: Opens the code maintenance form.

:I nput: None

‘Output: None

'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance

Private Sub cmdCodeMaintenance_Click()
DoCmd.OpenForm "1-0-0-7-PopUpFrm-

CodeMaintenance"

End Sub

:Functi on/Sub Name: cmdSave_Click()

'‘Description: Savesthe state of the data and closes the form.
:Input: None

'‘Output: None

'References. None

Private Sub cmdSave_Click()
On Error GoTo Err_Blanks:

DoCmd.Requery
DoCmd.Close
Exit Sub

Err_Blanks:

DoCmd.Beegp

MsgBox "The MishapDate field is amandatory entry.",
vbOKOnly, "Error"

End Sub

:Functi on/Sub Name: Form_Close()
:D&cription: Closesthe form.
:Input: None

:Output: None

'References. None

Private Sub Form_Close()
Forms![1-0-0-0-frm-SelectMishap].Visible = True
End Sub

'Function/Sub Name: Form_Dirty()

‘Description: If changes are made to the mishap displayed in
thisform

‘then the 1-0-0-0-frm-SelectMishap form will need to be
updated when

‘thisformisclosed. Thisfunction flagsaglobal variable so
that

‘when the 1-0-0-0-frm- SelectMishap form is reactivated, it
refreshes

'to display the changes.

'Input: None
'‘Output: None

'References. None

Private Sub Form_Dirty(Cancel As Integer)
'MsgBox "The form is now dirty"
Global Declarations.gFormNeedsRefresh = True
End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizestheform to the users
screen

'resolution and then centersit.

‘Input: None

‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-2-frm-EditMishap"
End Sub

'Function/Sub Name: Form_Open()

'‘Description: If thisform isopened from the 1-0-0-5-frm-
AddMishap

'then the record that was just added needsto be viewed in this
form

‘otherwise, it will display the record passed to it in the

'Global Declarations.gLngMishapToGet globa variable.
'Input: None

'‘Output: None

'References:
- GlobalDeclarations

340

Private Sub Form_Open(Cancel As Integer)

'Check to seeif you are coming here from the Add Mishap
Wizard or just
‘from the select mishap form.
If GlobalDeclarations.gBInAddAMishap = True Then
'Came from the add form, so closeit.
DoCmd.Close acForm, " 1-0-0-5-frm-AddMishap"
Globa Declarations.gBInAddAMishap = False

'Set the Title in the form header
MetxtTitleVaue = [MishaplD] & " - " & [OrgName] &
" - & [Aircraft_FK]
Else
'Set the Title in the form header
MetxtTitleValue=[MishaplD] & "-" & [OrgName] &
" -" & [Aircraft_FK]
End If

End Sub

'Function/Sub Name: cmdPreview_Click()
:Descri ption: Opens the Mishap Snapshot report.
'Input: None

:Output: None

'References:
' - 1-0-MishapSnapshot-OpenMi shaps

Private Sub cmdPreview_Click()
Me.Refresh
Global Declarations.gLngMishapToGet = Me.txtMishapl D

On Error GoTo StatError
Dim stDocName As String
Dim stLinkCriteria As String
stDocName = "1-0-MishapSnapshot-OpenMishaps'
stLinkCriteria="[MishaplD]=" &
Globa Declarations.gL ngMishapToGet
DoCmd.OpenReport tDocName, A_PREVIEW, ,
stLinkCriteria

Exit Sub
StartError:
DoCmd.Beep
MsgBox "There are no Mishapsto select or you do not have
adefault printer installed.”, vbOKOnly + vbExclamation,
"Error"

End Sub

'Function/Sub Name: MoveT oCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class bresks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
'Output: None

'References:
- clFormWindow

341

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6
.I)_eft = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORM CLASS-1-0-0-3-PopUpFrm-MishapDescription

Option Compare Database

' FORM DESCRIPTION

'Class Name: 1-0-0-3-PopUpFrm-MishapDescription
'Author: Pat Flanders & Scott Tufts

‘Thisclassis

'References:

- clFormWindow

- ez_SizingFunctions
- GlobaDeclarations

khkkhkkkkhkkhkkkhkkhkkhkkhkkhkhkhkkhkhhhkhhhkhhhhhhhhhhkhhhkhhhkkhhhkkhkhkk

' FUNCTIONS

Tkkkkkkkkkhkkhkkhhhkhhhkhhhhhhhhhhhhhhhhhhhhkhhhhhhhhixkx

'Function/Sub Name: cmdDone_Click()
:Dw:ription: Closes the form.

:Input: None

:Output: None

'References: None

Private Sub cmdDone_Click()

DoCmd.Close acForm, "1-0-0-3-PopUpFrm-
MishapDescription”
End Sub

'Function/Sub Name: Form_L oad()

'Description: Dynamically resizesthe form to the users
screen

'resolution and then centersit.

'Input: None

'Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-3-PopUpFrm:
MishapDescription”

342

End Sub

'Function/Sub Name: Form_Open()

'Description: Updates the menu bar and sets shows the value
of the

‘description for the mishap stored in the

Global Declarations.gStrDescription

'globd variable.

'Input: None
‘Output: None

'References:
' - GlobaDeclarations

Private Sub Form_Open(Cancel As Integer)

Me.txtDescription = Global Declarations.gStrDescription
End Sub

'Function/Sub Name: MoveToCenter()

'Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
'‘Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-1-0-0-4-Subfrm-Factors

'Option Compare Database
Option Explicit

FORM DESCRIPTION

'‘Class Name: 1-0-0-4-subfrm-Factors

'‘Author: Pat Flanders & Scott Tufts

‘This classis used in aform/subform relationship with the
'1-0-0-2-frm-EditMishap form to display, add, and delete
factors

'to a mishap.

'References:

' - 1-0-0-2-frm-EditMishap
' - clFormWindow

' - ez_SizingFunctions

- GlobalDeclarations

Ykkkkkkkkhkkkkhkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx
'

FUNCTIONS
Tkkkkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkkkhkkkhkkhkkkhkkhkkkhkkhkkkhkkkkhkkkkhkkkkhkkk
*khkhkkkhkkkhkkkhhkkhhkkk

'Function/Sub Name: cmdAddFactor_Click()

'‘Description: Adds a blank factor to the mishap indicated by
'tg(laobd Declarations.gLngMishapToGet global variable.
:Input: None

'Output: None

'References:
' - GlobaDeclarations

Private Sub cmdAddFactor_Click()
On Error GoTo Err_cmdAddFactor_Click
DoCmd.SetWarnings (False) "Turn off warning messages
Me.AllowAdditions = True 'Toggle theform to alow
addition of records

DoCmd.GoToRecord , , acNewRec 'Create a new record

343

Me.txtMishaplD.Vaue =
Global Declarations.gL ngMishapToGet 'Set the value of the
Mishap
Me.txtFactorSummary.Value = "Please enter a short
summary description of the Factor."
Me.cbo3rdLevelCode.Vaue = "UNK"
DoCmd.DoMenultem acFormBar, acRecordsMenu,
acSaveRecord, , acMenuVer70 'Save the record
Me.AllowAdditions = False "Toggle back to not allow
addition of records
Me.Refresh 'Refresh so the user can see the changes
Me.Recordset.Movel ast ‘'Move to the record just created
DoCmd.SetWarnings (True)

Exit_cmdAddFactor_Click:
Exit Sub

Err_cmdAddFactor_Click:

MsgBox ERR.Description
Resume Exit_cmdAddFactor_Click

End Sub

'Function/Sub Name: cmdDelFactor_Click()

:Descri ption: Deletes the factor with the current focus.
'Input: None

:Output: None

'References. None

Private Sub cmdDel Factor_Click()
On Error GoTo Err_cmdDelFactor_Click

DoCmd.DoMenultem acFormBar, acEditMenu, 8, ,
acMenuvVer70

DoCmd.DoMenultem acFormBar, acEditMenu, 6, ,
acMenuvVer70

Exit_cmdDelFactor_Click:
Exit Sub

Err_cmdDe Factor_Click:
MsgBox ERR.Description
Resume Exit_cmdDelFactor_Click

End Sub

FORMCLASS-1-0-0-5-frm-AddMishap

Option Compare Database
Option Explicit

'Placekeeper for current wizard page number.
Dim iPageNumber As Integer

"Tracksposition of 1st Level Factor being input.
Dim iFirstLevel Counter As Integer

'For hiding the back button when appropriate
Dim bHideBackButton As Boolean

"Tracks number of factors added so far
Dim iFactorsAddedCounter As Integer

'For closing the program and returning to main.
Dim bBackToMain As Boolean

FORM DESCRIPTION

'ClassName: 1-0-0-5-frm-AddMishap

'‘Author: Pat Flanders & Scott Tufts

‘Thisclassisawizard used to add Mishaps to the database.
The

'illusion of many formsis created using a TAB control on the
form

‘and setting the "tab sytle" property to "None". THISIS
IMPORTANT.

"The only way to edit the other pages of thetab control isto
'set the tab property to "Tabs" when the formisin design
view

‘and then change it back to "None" when finished. If you
don't

‘do this, you cannot edit any of the pages of the wizard except
'thefirst one.

'After amishap is added, the 1-0-0-2-frm-EditMishap form is
‘opened with the newly added Mishap selected for editing.
This

‘allowsthe user to immediately add Factors without having to
'go back to the main menu.

'References:

' - 1-0-0-7-PopUpFrm-CodeMaintenance
- 1-0-0-2-frm-EditMishap

' - clFormwWindow
- ez_SizingFunctions

' - Global Declarations

TRA AR A AR A IR A IR A IR A IR A Ak bk khhkhkhkhkhkhkhkhkhkkkhkkkkx

FUNCTIONS

TRA AR A AR A AR A IR A IR A IR A A Ak khhkhkhkhkhkhkhkhkhkkhkhkkkkx

'Function/Sub Name: cmdBack_Click()

'Description: Switches form focus back onetab in the tab
view

‘control.

‘Input: None

‘Output: None

'References. None

Private Sub cmdBack_Click()
businessLogicBackward (iPageNumber)
End Sub

'Function/Sub Name: cmdNext_Click()

'‘Description: Switchesform focus forward onetab in the tab
view

‘control.

'Input: None

‘Output: None

'References. None

Private Sub cmdNext_Click()

If iPageNumber = 0 Then iPageNumber = iPageNumber +
1

businesslogicForward (iPageNumber)

End Sub

:Functi on/Sub Name: cmdFinish_Click()

‘Description: Adds the mishap to the database and opensthe
?cj)lrtm so that the user can add factors.

:Input: None

'‘Output: None

'References:
' - 1-0-0-2-frm-EditMishap

Private Sub cmdFinish_Click()
On Error GoTo StartError

MeVisble=Fdse

Dim stLinkCriteria As String

stLinkCriteria= "[MishaplD]=" &
Globa Declarations.gLngMishapToGet

DoCmd.OpenForm "1-0-0-2-frm-EditMishap", , ,
stLinkCriteria

ExitSub:
Exit Sub

StartError:

DoCmd.Beep

MsgBox "Y ou have |ft at least onefield in thiswizard
blank. All entries are mandatory. Please go back and input

datafor dl fields.", voOK Only, "All Entries Are Mandatory"

Resume ExitSub

End Sub

:Functi on/Sub Name: cmdCodeMaintenance_Click()
:Deacri ption: Opens the code maintenance form.

:I nput: None

:Output: None

'References:
' - 1-0-0-7-PopUpFrm-CodeMaintenance

Private Sub cmdCodeMaintenance_Click()
DoCmd.OpenForm "1-0-0-7-PopUpFrm-

CodeMaintenance"

End Sub

'Function/Sub Name:
' - cmdCrewCoord_Click()
- cmdEnvironmental_Click()
' - cmdEquipment_Click()
' - cmdError_Click()
' - cmdMedical_Click()
' - cmdOrganizational _Click()
' - cmdReadiness_Click()
' - cmdSupervisory_Click()
' - cmdViolation_Click()
' - cmdWorkspace Click()
'‘Description: For controlling movement between pages not

capable of

'movement using the"next" function
'Input: None

'Output: None

'References. None

Private Sub cmdCrewCoord_Click()
iPageNumber = 11
DoCmd.GoToControl "Pagell"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdEnvironmental _Click()
iPageNumber = 13
DoCmd.GoToControl "Pagel3"

345

Me.cmdNext.Enabled = True
End Sub

Private Sub cmdEquipment_Click()
iPageNumber = 14
DoCmd.GoToControl "Pagel4"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdError_Click()
iPageNumber = 16
DoCmd.GoToControl "Pagel6"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdMedical_Click()
iPageNumber = 10
DoCmd.GoToControl "Pagel0"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdOrganizational _Click()
iPageNumber = 8
DoCmd.GoToControl "Page8"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdReadiness_Click()
iPageNumber = 12
DoCmd.GoToControl "Pagel2"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdSupervisory_Click()
iPageNumber = 9
DoCmd.GoToControl "Paged"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdViolation_Click()
iPageNumber = 17
DoCmd.GoToControl "Pagel 7"
Me.cmdNext.Enabled = True

End Sub

Private Sub cmdWorkspace _Click()
iPageNumber = 15
DoCmd.GoToControl "Pagel5"
Me.cmdNext.Enabled = True

End Sub

:Function/Sub Name: Form_Close()
'Description: Closestheform.
:Input: None

'Output: None

'References:
' - 1-0-0-0-frm-SelectMishap

Private Sub Form_Close()

If bBackToMain = True Then
Forms![1-0-0-0-frm-SelectMishap].Visible= True

End If Me.cbo3rdLevelCodell.Vaue = "ADA"
Me.cbo3rdLevelCodel2.Vadue = "CRT"
Me.cbo3rdLevelCodel3.Vaue = "EHZ"
End Sub Me.cho3rdLevel Codel4.Vdue = "DUC"
Me.cbo3rdLevelCodel5.Vadue = "CON"
Me.cbo3rdLevelCodel6.Vaue ="IDG"
! Me.cbo3rdLevel Codel7.Vaue = "IFC"
'Function/Sub Name: Form_Load() Me.txtFactorSummary8.Vaue = "No description entered,

yet"
'Description: Dynamically resizesthe form to the users Me.txtFactorSummary9.Vaue = "No description entered,
screen yet."
'resolution and then centersiit. Me.txtFactorSummary10.Vaue = "No description entered,
. yeL"
'Input: None Me.txtFactorSummary11.Vaue = "No description entered,
. yet"
'‘Output: None Me.txtFactorSummary12.Vaue = "No description entered,
. yeL"
'References: Me.txtFactorSummary13.Vaue = "No description entered,
' - ezSizeForm yet."
Me.txtFactorSummary14.Vaue = "No description entered,
yet”
Private Sub Form_L oad() Me.txtFactorSummary15.Vaue = "No description entered,
ezSizeForm Me, -1 yet."
MoveToCenter "1-0-0-5-frm-AddMishap" Me.txtFactorSummary16.Value = "No description entered,
End Sub yet."
Me.txtFactorSummary17.Vaue = "No description entered,
yet”
'Function/Sub Name: Form_Open(Cancel As Integer) 'Set theinitial value of the factors counter
' iFactorsAddedCounter = 0
'Description: Initializes all variables. Me.txtFactorCounter.Vaue = iFactorsAddedCounter
'Input: None End Sub
‘Output: None
'References: None 'Function/Sub Name: txtDate GotFocus()
k 'Description: Ensures date fields are properly formatted to
Private Sub Form_Open(Cancel As Integer) medium
'date.
bBackToMain = False '
'Input: None
'Set initial values on page 1 '
Me.txtDate.Vaue = Format(Now(), "dd-mmm-yyyy") ‘Output: None
Me.choAircraftType.Value = "Unknown" '
Me.cboOrganization.Vaue = "UNK" 'References: None
Me.cboL ocation.Vaue = "UNK" '
Me.txtShortDescription.Value = "Please enter a short !
description.” Private Sub txtDate GotFocus()
Me.txtLongDescription.Vaue = "Please enter along 'Format the date in the textbox so the time doesn't appear
description.” MetxtDate = Formet([txtDate], "Medium Date")
End Sub
'Set the database type
Global Declarations.getDBType
Me.txtDatabaseType.Vaue =
Global Da:l aatlons-geratab&Type TR A AR A AR A AR A AR A IR A IR A IR A IR A I A h Ak hkhkhkhkhkkhkhkkhkhkkkkkx
' LOGIC SUBROUTINES
'w |n|t|a| Vdue Of the Ch&:kkaeSOH page 18 TR A A KA AR A AR A AR A IR A IR A IR A IR A I A h kA hkhkhkhkhkkhkhkkhkhkkkkkx
Me.chkP18MgmtCond.Vaue = False
Me.chkP18MaintCond.Vaue = False
Me.chkP18WorkCond.Value = False k
Me.chkP18MaintActs.Vaue = False 'Function/Sub Name: businessL ogicForward()
'Set initial values of combo and text boxes on pages 817 '‘Description: Logic to determine what pageto go in the
Me.cbo3rdLevelCode8.Vaue="DES' forward
Me.cbo3rdLevel Coded.Value ="1DQ" 'direction.

Me.cbo3rdLevelCodel0.Vaue = "LIM"

346

'Input:
' - pageCurrentlyAt - The page with the current focus.

'Output: None

'References. None

Private Sub businessL ogicForward(pageCurrentlyAt As
Integer)

Select Case pageCurrentlyAt

Casel
If Trim(Me.txtLongDescription.Value) =" Then
Me.txtLongDescription.Value = "Please enter a
long description.”
End If
If IsNull(Me.txtLongDescription.Value) Then
Me.txtLongDescription.Value = "Please enter a
long description.”
End If
Me.cmdBack.Enabled = True
Me.cmdCodeMaintenance.Visible = False
iPageNumber = iPageNumber + 1
DoCmd.GoToControl "Page" & iPageNumber

Case?2
Select Case Mefralnjuries
CaselTo2
Me.choClassVaue="A"
Case3To4
If MefraDamage = 1 Or MefraDamage = 2
Then
Me.choClassVaue="A"
Else
Me.cboClass.Vaue="B"
End If
Cae5
If MefraDamage = 1 Or MefraDamage = 2
Then
Me.choClassVaue="A"
Elself MefraDamage = 3 Then
Me.cboClass.Value="B"
Else
Me.cbhoClassVdue="C"
End If
Cae6
If MefraDamage = 1 Or MefraDamage = 2
Then

Me.choClassVaue="A"
Elself MefraDamage = 3 Then
Me.cboClass.Vaue="B"
Elself MefraDamage =4 Then
Me.cboClass.Vaue="C"
Elself MefraDamage =5 Then
MsgBox "The criteriayou selected for damage
andinjuries" & _
"does not qualify as areportable mishap.",
vbOKOnly + vblnformation, "Mishap Does Not Qualify"
Exit Sub
End If

End Sdlect

iPageNumber = iPageNumber + 1
DoCmd.GoToControl "Page" & iPageNumber

Cae3
Select Case MefraType
Caz1l
If MefraType=1Then
MechoType="FM"
End If
Cae2
If MefraType=2 Then
Me.choType ="FRM"
End If
Cae3
If MefraType=3Then
MechoType="AGM"
End If
End Sdlect

'Code to save the mishap goes here
addMishap
Global Declarations.gLngMishapToGet =
Me. TxtGl oba Focus.Vaue
Global Declarations.gBInAddAMishap = True
Global Declarations.gFormNeedsRefresh = True

Me.cmdBack.Enabled = False
iPageNumber = 18
iFirstLevelCounter = 1
DoCmd.GoToControl "Pagel8"

Case4To7
‘Do nothing. Button is disabled

Cae8
If Trim(Me.txtFactorSummary8.Vaue) ="" Then
Me.txtFactorSummary8.Vaue = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevel Code8.Value) =" Then
MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
Else
addFactor Me.cbo3rdLevel Code8.Value,
Me.txtFactorSummary8.Vaue
Me.txtFactorSummary8.Vaue = "No description
entered, yet."
MsgBox "Factor added to database.", vbOKOnly +
vblInformation, " Success'
If iFirstLevel Counter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
End If

Case9
If Trim(Me.txtFactorSummary9.Value) ="" Then
Me.txtFactorSummary9.Vaue = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevelCoded.Vaue) ="" Then
MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOK Only, "Missing Mandatory Entry"

Else
addFactor Me.cbo3rdLevelCoded.Value,
Me.txtFactorSummary9.Value
Me.txtFactorSummary9.Vaue = "No description
entered, yet."

MsgBox "Factor added to database.”, vbOKOnly +
vblnformation, " Success'
If iFirstLevel Counter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
End If

Cae 10
If Trim(Me.txtFactorSummary10.Vaue) ="" Then
Me.txtFactorSummary10.Value = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevelCodel0.Vaue) ="" Then
MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"

Else
addFactor Me.cbo3rdLevelCodel0.Value,
Me.txtFactorSummary10.Vaue
Me.txtFactorSummary10.Value = "No description
entered, yet."

MsgBox "Factor added to database.", vbOKOnly +
vblnformation, " Success'
If iFirstLevel Counter =1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
End If

Case 11
If Trim(Me.txtFactorSummary11.Vaue) ="" Then
Me.txtFactorSummary11.Value = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevelCodell.Vaue) ="" Then
MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"

Else
addFactor Me.cbo3rdLevel Codell.Value,
Me.txtFactorSummary11.Vaue
Me.txtFactorSummary11.Value = "No description
entered, yet."

MsgBox "Factor added to database.", vbOKOnly +
vblnformation, " Success"
If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl *Pagel8"
End If

Cae12
If Trim(Me.txtFactorSummary12.Vaue) ="" Then
Me.txtFactorSummary12.Vaue = "No description
entered, yet."
End If

If Trim(Me.cho3rdLevelCodel2.Value) = "" Then

348

MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"

Else
addFactor Me.cbo3rdLevel Codel2.Value,
Me.txtFactorSummary12.Vaue
Me.txtFactorSummary12.Value = "No description
entered, yet."

MsgBox "Factor added to database.", vbOKOnly +
vblnformation, " Success"
If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl *Pagel8"
End If

Cae13
If Trim(Me.txtFactorSummary13.Vaue) ="" Then
Me.txtFactorSummary13.Vaue = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevel Codel3.Value) ="" Then
MsgBox "Y ou can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
Else
addFactor Me.cbo3rdLevelCodel3.Value,
Me.txtFactorSummary13.Vaue
Me.txtFactorSummary13.Value = "No description
entered, yet."
MsgBox "Factor added to database.”, vbOKOnly +
vbInformation, " Success'
If iFirstLevel Counter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl *Pagel8"
End If

Cae14
If Trim(Me.txtFactorSummary14.Vaue) = " Then
Me.txtFactorSummary14.Value = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevelCodel4.Vaue) ="" Then
MsgBox "Y ou can't leavethe 3RD LEVEL
FACTOR blank.", vbOK Only, "Missing Mandatory Entry"
Else
addFactor Me.cbo3rdLevelCodel4.Value,
Me.txtFactorSummary14.Vaue
Me.txtFactorSummary14.Vaue = "No description
entered, yet."
MsgBox "Factor added to database.”, vbOKOnly +
vblInformation, " Success'
If iFirstLevel Counter =1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
EndIf

Cae 15
If Trim(Me.txtFactorSummary15.Vaue) ="" Then
Me.txtFactorSummary15.Value = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevelCodel5.Value) =" Then
MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"

Else
addFactor Me.cbo3rdLevel Codel5.Value,
Me.txtFactorSummary15.Vaue
Me.txtFactorSummary15.Value = "No description
entered, yet."
MsgBox "Factor added to database.", vbOKOnly +
vbInformation, " Success'
If iFirstLevelCounter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
End If

Cae 16
If Trim(Me.txtFactorSummary16.Vaue) ="" Then
Me.txtFactorSummary16.Vaue = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevelCodel6.Vaue) ="" Then
MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"
Else
addFactor Me.cbo3rdLevelCodel6.Value,
Me.txtFactorSummary16.Vaue
M etxtFactorSummary16.Vaue = "No description
entered, yet."
MsgBox "Factor added to database.”, vbOKOnly +
vbInformation, " Success'
If iFirstLevel Counter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl *Pagel8"
End If

Cae 17
If Trim(Me.txtFactorSummary17.Vaue) =" Then
Me.txtFactorSummary17.Value = "No description
entered, yet."
End If

If Trim(Me.cbo3rdLevelCodel7.Vaue) ="" Then
MsgBox "You can't leave the 3RD LEVEL
FACTOR blank.", vbOKOnly, "Missing Mandatory Entry"

Else
addFactor Me.cbo3rdLevel Codel7.Vaue,
Me.txtFactorSummary17.Vdue
Me.txtFactorSummary17.Vaue = "No description
entered, yet."

MsgBox "Factor added to database.", vbOKOnly +
vblnformation, " Success'
If iFirstLevel Counter = 1 Then
Me.cmdBack.Enabled = False
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
End If

Cae 18
askWhereToGo

Case 19
‘Do nothing. Button is disabled

End Sdlect

End Sub

'Function/Sub Name: businessL ogicBackward()

'Description: Logic to determine what pageto goin the
Reverse
'direction.

'Input:
' - pageCurrentlyAt - The page with the current focus.

‘Output: None

'References. None

Private Sub businessL ogicBackward(pageCurrentlyAt As
Integer)

Select Case pageCurrentlyAt

Casel
‘Do nothing. Back button is disabled

Case2
iPageNumber = iPageNumber - 1
DoCmd.GoToControl "Page" & iPageNumber
Me.cmdCodeM aintenance.Visible = True
Me.cmdBack.Enabled = False

Case3
iPageNumber = iPageNumber - 1
DoCmd.GoToControl "Page" & iPageNumber

Case4To7
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
Me.cmdBack.Enabled = False
Me.cmdNext.Enabled = True

Case8To09
iPageNumber = 4
DoCmd.GoToControl "Page4"
Me.cmdNext.Enabled = False

Cae10To 12
iPageNumber =5
DoCmd.GoToControl "Page5"
Me.cmdNext.Enabled = False

Case13To 15
iPageNumber =6
DoCmd.GoToControl "Page6”
Me.cmdNext.Enabled = False

Case16 To 17
iPageNumber =7
DoCmd.GoToControl "Page7"
Me.cmdNext.Enabled = False

Cae 18
If iFirstLevelCounter > 1 Then
iFirstLevelCounter = iFirstLevel Counter - 1
'Update the page 18 to reflect backwards
movement.
Select Case iFirstLevel Counter

Case 1 'managementCond

349

With MelblP18MgmtCond
.ForeColor = QBColor(9)
FontWeight = 600
.Caption ="Input MANAGMENT

CONDITIONS related factors.”

End With

Me.chkP18MgmtCond.Value = False

With MelblP18MaintCond
.ForeColor = QBColor(0)
FontWeight = 400

End With

DoCmd.GoToControl "cmdNext"

Me.cmdBack.Enabled = False

Case 2 'maintainerCond

With MellblP18MaintCond
.ForeColor = QBColor(9)
FontWeight = 600
.Caption ="Input MAINTAINER

CONDITIONS related factors.”

End With

Me.chkP18MaintCond.Value = False

With MellblP18WorkCond
.ForeColor = QBColor(0)
FontWeight = 400

End With

Case 3 'workingCond

With Me.lblP18WorkCond
.ForeColor = QBColor(9)
.FontWeight = 600
.Caption ="Input WORKING

CONDITIONS related factors."

End With

Me.chkP18WorkCond.Vaue = False

With Me.lblP18MaintActs
.ForeColor = QBColor(0)
FontWeight = 400

End With

Caz4 'maintainerAct

With MelblP18MaintActs
.ForeColor = QBColor(9)
FontWeight = 600
.Caption ="Input WORKING

CONDITIONS related factors."
End With
Me.chkP18MaintActs.Vaue = Fase

End Select
Else
MsgBox "The Mishap has aready been entered
into the database and cannot be edited from thiswizard." & _
Chr(13) & Chr(13) & "Y ou can edit the mishap
data after you have finished entering factor data.",
vbOKOnly, _
"Can't Edit Mishap"
End If

Cae 19
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
Me.cmdFinish.Enabled = False
End Select

End Sub

350

'Function/Sub Name: askWhereToGo()

'Description: Logic to determine what page to go to based on
user

‘input.

‘Input: None

‘Output: None

'References. None

Private Sub askWhereToGo()
startSelect:
Select Case iFirstLevel Counter

Case 1 'managementCond
If managementCond = True Then
iPageNumber =4
DoCmd.GoToControl "Page4"
Me.cmdNext.Enabled = False
Me.cmdBack.Enabled = True
Else
iFirstLevelCounter = 2
Me.cmdBack.Enabled = True
With MelblP18MgmtCond
.ForeColor = QBColor(8)
.FontWeight = 400
.Caption = "COMPLETED - Input
MANAGMENT CONDITIONS related factors."
End With
Me.chkP18MgmtCond.Vaue = True
With Me.IblP18MaintCond
.ForeColor = QBColor(9)
.FontWeight = 600
End With
iPageNumber = 18
DoCmd.GoToControl *Pagel8"
'GoTo startSelect
End If

Case 2 'maintainerCond
If maintainerCond = True Then

iPageNumber =5

DoCmd.GoToControl "Page5"

Me.cmdNext.Enabled = False

Me.cmdBack.Enabled = True

Else

iFirstLevel Counter = 3

With Me.lbIP18MaintCond
.ForeColor = QBColor(8)
.FontWeight = 400
.Caption ="COMPLETED - Input

MAINTAINER CONDITIONS related factors."

End With

Me.chkP18MaintCond.Vaue = True

With Me.lblP18WorkCond
.ForeColor = QBColor(9)
.FontWeight = 600

End With

iPageNumber = 18

DoCmd.GoToControl "Pagel8"

'‘GoTo startSelect

End If

Case 3 'workingCond
If workingCond = True Then
iPageNumber = 6
DoCmd.GoToControl "Page6”
Me.cmdNext.Enabled = False
Me.cmdBack.Enabled = True
Else
iFirstLevelCounter = 4
With Me.lblP18WorkCond
.ForeColor = QBColor(8)
.FontWeight = 400
.Caption ="COMPLETED - Input WORKING
CONDITIONS related factors.”
End With
Me.chkP18WorkCond.Value = True
With MelblP18MaintActs
.ForeColor = QBColor(9)
.FontWeight = 600
End With
iPageNumber = 18
DoCmd.GoToControl "Pagel8"
'GoTo startSelect
End If

Case 4 'maintainerAct
If maintainerAct = True Then
iPageNumber =7
DoCmd.GoToControl "Page7"
Me.cmdNext.Enabled = False
Me.cmdBack.Enabled = True
Else
Me.chkP18MaintActs.Vaue = True
iFirstLevelCounter =5
With Me.lblP18MaintActs
.ForeColor = QBColor(8)
.FontWeight = 400
.Cagption ="COMPLETED - Input WORKING
CONDITIONS related factors.”
End With
iPageNumber = 18
DoCmd.GoToControl *Pagel8"
'‘GoTo startSelect
End If

Case5 'Done
'‘MsgBox "All factors should now be added. Click
next to continue.", vbOK Only, "All Factors Added"
iPageNumber = 19
DoCmd.GoToControl "Pagel9"
Me.cmdNext.Enabled = False
Me.cmdFinish.Enabled = True

End Sdlect

End Sub

"Function/Sub Name:

' - managementCond()
- maintainerCond()

- workingCond()

- maintainerAct()

351

'Description: 4 Functions. For prompting usersfor type of
1st level

‘factor to input.

‘Input: None

‘Output: None

'References. None

Private Function managementCond() As Boolean
Dim response As Variant

response = MsgBox("Was there a Management Condition

that contributed to thismishap?' & Chr(13) & Chr(13) & _

"Examples” & Chr(13) & _

" - Anengine change is performed despite a high sea
state." & Chr(13) & _

" - A manual omits astep caling for an o-ring to be
installed." & Chr(13) & _

" - A commander does not ensure that personnel wear
required protective gear." & Chr(13) & _

" - A technica publication does not specify torque
requirements.” & Chr(13) & _

" - A poor component layout prohibits direct viewing
during inspection." & Chr(13) & Chr(13) & _

"Click yesto enter afactor. No to go to the next
category.”, vbY esNo + vbQuestion + vbDefaultButtonl,
"First Level Factors")

If response = vbYes Then
managementCond = True
Else
managementCond = False
End If

End Function
Private Function maintainerCond() As Boolean

Dim response As Variant

response = MsgBox("Was there a Maintainer Condition

that contributed to this mishap?' & Chr(13) & Chr(13) & _

"Examples” & Chr(13) & _

' - A maintainer with life stress hasimpaired
concentration." & Chr(13) & _

" - A maintainer isfatigued from working 20 hours
straight.” & Chr(13) & _

" - A short maintainer cannot visualy inspect an
aircraft component.” & Chr(13) & _

" - A maintainer using improper hand signals." &
Chr(13) & _

" - A maintainer signs off an ingpections due to
perceived pressure.” & Chr(13) & _

" - A maintainer working on an aircraft skipped a
requisite training evolution." & Chr(13) & Chr(13) & _

"Click yesto enter afactor. No to go to the next
category.”, vbY esNo + vbQuestion + vbDefaultButtonl,
"First Level Factors")

If response = vbYes Then
maintainerCond = True
Else
maintainerCond = False
End If

End Function
Private Function workingCond() As Boolean

Dim response As Variant

response = MsgBox("Was there a Working Condition that

contributed to thismishap?' & Chr(13) & Chr(13) & _

"Examples” & Chr(13) & _

" - A maintainer working at night without artificial
lighting." & Chr(13) & _

" - A maintainer securing an aircraft in adriving rain
improperly chocksawhed" & Chr(13) & _

working at night without artificia lighting." &

Chr(13) & _

" - A maintainer dipson apitching deck." & Chr(13)
&

" - A maintainer usesfaulty test set." & Chr(13) & _

' - A maintainer in afuel cell cannot reach a
component." & Chr(13) & _

" - A maintainer'sview in spotting an aircraft is
obscured by catapult steam." & Chr(13) & Chr(13) & _

"Click yesto enter afactor. No to go to the next
category.", vbY esNo + vbQuestion + vbDefaultButtonl,
"First Level Factors")

If response = vbY es Then
workingCond = True
Else
workingCond = False
End If

End Function
Private Function maintainerAct() As Boolean

Dim response As Variant

response = MsgBox("Was there aMaintainer Act that
contributed to thismishap?' & Chr(13) & Chr(13) & _
"Examples" & Chr(13) & _
" - A maintainer missesahand signal." & Chr(13) & _

' - A maintainer inflates atire using a pressure required

by adifferent aircraft.” & Chr(13) & _

" - A maintainer migudges the distance between atow
tractor an aircraft wing." & Chr(13) & _

' - A maintainer engagesin practices, condoned by
management, that bend therules." & Chr(13) & _

" - A maintainer willfully breaks standing rules
disregarding the consequences." & Chr(13) & Chr(13) & _

"Click yesto enter afactor. Noto Finish.", vbYesNo +
vbQuestion + vbDefaultButtonl, "First Level Factors')

If response = vbY es Then
maintainerAct = True
Else
maintainerAct = False
End If

End Function

'Function/Sub Name: addFactor()
'‘Description: Creates a new default factor.
'Input:

- s3rdLevel Factor
' - sShortDescription

- Type of factor to create.
- Short description for the factor.

352

‘Output: None

'References. None

Private Function addFactor(s3rdLevel Factor As String,
sShortDescription As String) As Boolean

iFactorsAddedCounter = iFactorsAddedCounter + 1
Me.txtFactorCounter.Vaue = iFactorsAddedCounter

'On Error GoTo StartError

DoCmd.SetWarnings (False)

DoCmd.RunSQL "INSERT INTO tblMishapFactors
(MishaplD_FK, FactorSummary, 3rdLevelCode_FK)
VALUES (" & GlobaDeclarat ions.gLngMishapToGet & ",
" & sShortDescription & "', " & s3rdLevelFactor & "');"

DoCmd.SetWarnings (True)

addFactor = True
ExitSub:

Exit Function
StartError:

addFactor = False

GoTo ExitSub

End Function

'Function/Sub Name: cmdCancel_Click()
:DESCI’i ption: Closes the form undoing changes.
'Input: None

:Output: None

'References. None

Private Sub cmdCancel_Click()
On Error GoTo Err_cmdCancel_Click

Global Declarations.gFormNeedsRefresh = True

bBackToMain = True 'Have to use aflag to differentiate a
cancel fromafinish

DoCmd.Close acForm, "1-0-0-5-frm-addMishap"

Exit_cmdCancel_Click:
Exit Sub

Err_amdCancel_Click:
MsgBox ERR.Description
Resume Exit_cmdCancel_Click

End Sub

'Function/Sub Name: addMishap()

'‘Description: Creates a new default Mishap.

'Input: None.
'‘Output: None

'References: None

Private Function addMishap() As Boolean

On Error GoTo StartError

DoCmd.SetWarnings (False)
DoCmd.RunSQL "INSERT INTO thlMishaps
(MishapDate, Aircraft_FK, Class FK, Type FK,
LocationID_FK," & _
"OrglD_FK, ShortDescription, LongDescription,
DatabaseType) VALUES (" & _
MetxtDaeVaue& ", " & _
Me.cboAircraftTypeVaue& "', " & _
Me.cboClassVaue& ", " & _
MechoTypeVaue& ", " & _
Me.choLocation.Vaue& ", " & _
Me.cboOrganization.Vaue & "', " & _
Me.txtShortDescription.Value & ™', ™ & _
Me.txtLongDescription.Vaue& "', ™ & _
MetxtDatabaseTypeVdue & ™);"
DoCmd.SetWarnings (T rue)

‘Now determine the Mishapl D that was just created by
getting themax value

Dim conn As New ADODB.Connection

Dim rst AsNew ADODB.Recordset

Dim sTempHolder As String

'Open a connection to the data
Set conn = Application.CurrentProject.Connection

'Open arecordset with a keyset cursor

rst.Open "SELECT max(Mishapl D) FROM tblMishaps”,

conn, adOpenDynamic, adlL ockOptimistic, adCmdText

rst.MoveFirst
'MsgBox rgt.Fields(0)
Me.TxtGloba Focus.Vaue = rst.Fields(0)

'Clean up
rst.Close

353

conn.Close

addMishap = True
ExitSub:

Exit Function
StartError:

addMishap = False

GoTo ExitSub

End Function

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

'Input: None
‘Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVad strFormName As String)
Dim fwForm As New clFormWindow

With fwForm
.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6
.I)_eft = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

FORMCLASS-1-0-0-7-PopUpFrm-CodeM aintenance

Option Compare Database
Option Explicit

FORM DESCRIPTION

'Class Name: 1-0-0-7-PopUpFrm-CodeMaintenance

'‘Author: Pat Flanders & Scott Tufts

‘Allows an Administrator to add codes directly to the datbase
code

'lookup tables.

'References:
- thlAircraft
' - tblMishapClass
- tblMishapL ocation
' - tblOrganization
- tbimishaptype

Ykkkkkkkkhkkkkhkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx

' FUNCTIONS

Ykkkkkkkkhkkkkhkkkkhkkkkhkkkhkhkkhkkkhkhkhkkhkhkkkhkhkkhkhkhkkkhkkkkx

:Functi on/Sub Name: cmdClose_Qick()
:Description: Closesthe form.

:Input: None

:Output: None

'References. None

Private Sub cmdClose_Click()

DoCmd.Close acForm, "1-0-0-7-PopUpFrm-
CodeMaintenance"
End Sub

'Function/Sub Name: cmdOK _Click()

'Description: Opens the appropriate table for direct editing
based

‘on the radio button selection in the frame.

'Input: None

‘Output: None

'References. None

Private Sub cmdOk_Click()

If Me.Frame6 =1 Then

354

DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint -
thlAircraft”, acFormDS
End If

If Me.Frame6 = 2 Then
DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint-
tblMishapClass', acFormDS
End If

If Me.Frame6 = 3 Then
DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint -
tblMishapL ocation”, acNormal
End If

If Me.Frame6 = 4 Then
DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint -
thlOrganization”, acNormal
End If

If Me.Frame6 = 5 Then
DoCmd.OpenForm "1-0-0-7-PopUpFrm-CodeMaint -
tbiMishapType", acFormDS
End If

End Sub

'Function/Sub Name: Form_Load()

'Description: Dynamically resizes the form to the users
screen

'resolution and then centersit.

‘Input: None

‘Output: None

'References:
' - ezSizeForm

Private Sub Form_L oad()

ezSizeForm Me, -1

MoveToCenter "1-0-0-7-PopUpFrm-CodeMaintenance"
End Sub

'Function/Sub Name: MoveToCenter()

'‘Description: Centers the form on the screen. Using the
ezSizeForm

'class breaks Access's built -in autocenter function, so this
'method is needed to fix it. Each form getsits own version of
this

'function so that minor adjustments can be made on aform by
form

'basis.

‘Input: None

‘Output: None

'References:
- clFormWindow

Public Sub MoveToCenter(ByVa strFormName As String)
Dim fwForm As New clFormWindow

With fwForm

355

.hwnd = Forms(strFormName).hwnd
"Top = ((.Parent.Top - .Top) / 2) + ((.Parent.Top - .Top) *
0.6)
.Left = (.Parent.Width - .Width) / 2
End With
Set fwForm = Nothing

End Sub

MODULE-DetermineOSDeclares

Option Explicit

Type OSVERSIONINFO

dwOSVersioninfoSize As Long

dwMajorVersion AsLong

dwMinorVersion AsLong

dwBuildNumber AsLong

dwPlatformld As Long

s<zCSDVersion As String * 128 ' Maintenance string for PSS

usage

End Type

Declare Function GetVersionEx Lib "kernel 32" Alias
"GetVersonExA" (IpVersionInformation As
OSVERSIONINFO) AsLong

Declare Function GetSystemMetrics Lib "user32" (ByVa
nindex AsLong) AsLong

Public Const SM_CLEANBOQT = 67

Public Const SM_DEBUG = 22

Public Const SM_SL OWMACHINE =73

Public Const VER_PLATFORM_WIN32s=0

Public Const VER_PLATFORM_WIN32_WINDOWS =1
Public Const VER_PLATFORM_WIN32_NT =2

MODULE DESCRIPTION

'ClassName: DetermineOSDeclares.bas

'‘Author: Pat Flanders & Scott Tufts

'‘Description: Contains various functions for determining
system

‘properties like O/S type and version of Accessthat is
running.

"The O/S type functions are declared above and result in
direct
‘querying of the Windows API.

'References. None

Tkhk KKk h AR KKK KKK A KKK IR A IR A I A I kA d kA dhkhkhkkhkhkkhkhkkhkhkhkkx

FUNCTIONS

Tkhk KKk h AR KKK KKK A KKK IR A IR A I A I kA d kA dhkhkhkkhkhkkhkhkkhkhkhkkx

'Function/Sub Name: 1sRuntime()

'Description: Determines if Access runtime is being used to
runthe

‘application. Access runtime has no support for reports.
'Input: None

'Output: Success or failure.

'References. None

Function IsRuntime() As Boolean

' Check if this application is using the run-time version of
Access

IsRuntime = SysCmd(acSysCmdRuntime)

End Function

'Function/Sub Name: 1sRunning()

'‘Description: To prevent asecond instance from loading if a
user mistakenly

‘attemptsto launch it twice. Thiscodeiscalled from the
autoexec

'macro to test whether the app is aready running and
terminate

‘thelaunch if acopy of it is already open.

'Input: None
'Output: -1 meansthat an instance is already running.

'References. None

Function IsRunning() As Integer
If TestDDEL ink(Application.CurrentProject.Name) Then
'A -1 meansthat thisis asecond instance.

IsRunning = -1
Else
IsRunning =0
End If
End Function

" Helper Function for IsRunning() above
Function TestDDEL ink(ByVa strAppName$) As Integer

Dim varDDEChannel As Variant

On Error Resume Next

Application.SetOption ("lIgnore DDE Requests'), True
varDDEChannel = DDElnitiate("MSAccess’,

strAppName)

' When the app isn't already running thiswill error
If ERR Then

TestDDELink = False
Else

TestDDELink = True

DDETerminate varDDEChannel

DDETerminateAll
End If

Application.SetOption ("Ignore DDE Requests'), False

End Function

356

MODULE-ezSizingFunctions

Option Compare Database
Option Explicit

MODULE DESCRIPTION

'ClassName: ezSizingFunctions.bas

'‘Author: EZ Sizing Functions

' Copyright (C) 2000 Database Creations, Inc.
Revision 6/14/00

' based on 8/25/99 code with revisionss

'‘Description: Contains various functions for dynamically
resizing

'the forms inthe application based on the user's screen
resolution.

'References. None

Ykkkkkkkkhkkkkhkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkkhkhkkhkhkkhkhkkhkkkhkkkhkkkxkx

' FUNCTIONS
Ykkkkkkkkhkkkkhkkkkhkkkkhkkkhkkhkkhkkhkhkkhkhkkhkhkkhkkkkkhkkkkhkkkkkkkx
'Functions are defined below by the author and are Copyright
of

'Database Crestions, Inc.

Type RECT
x1AslLong
ylAsLong
X2 AsLong
y2 AslLong

End Type

TypeTEXTMETRIC
tmHeight As Integer
tmAscent As Integer
tmDescent As Integer
tminternalLeading As Integer
tmExternalLeading As Integer
tmAveCharWidth As Integer
tmMaxCharWidth As Integer
tmWeight As Integer
tmitalic As String* 1
tmUnderlined As String * 1
tmStruckOut As String * 1
tmFirstChar As String * 1
tmLastChar AsString* 1
tmDefaultChar As String * 1
tmBreakChar As String * 1
tmPitchAndFamily As String * 1
tmCharSet As String * 1
tmOverhang As Integer
tmDigitizedAspectX As Integer
tmDigitizedAspectY AsInteger

End Type

Declare Function IsZoomed Lib "user32" (ByVa hwnd As
Long) AsLong

Declare Function Islconic Lib "user32" (ByVa hwnd As
Long) AsLong

357

Declare Function GetDesktopWindow Lib "user32" () As
Long

Declare Function GetWindowRect Lib "user32" (ByVa
hwnd As Long, rectangle ASRECT) AsLong

Declare Function GetTextMetrics Lib "gdi32" Alias
"GetTextMetricsA" (ByVal hdc AsLong, IpMetrics As
TEXTMETRIC) As Long

Declare Function GetWindowDC Lib "user32" (ByVa hwnd
AsLong) AsLong

Declare Function ReleaseDC Lib "user32" (ByVa hwnd As
Long, ByVa hdc AsLong) AsLong

Declare Function SetMapMode Lib "gdi32" (ByVa hdc As
Long, ByVa nMapMode As Long) As Long

Public Sub ezSizeForm(xForm As Form, ScaleFactor As
Single, Optional EchoOff As Boolean = True)

"This subroutine will resize the form specified by parameter
xForm by the factor of ScaleFactor

'If scale factor is O or negative, automatic scaling will occur
based on the following

' Vaue Formsoriginaly designed for

' 0 640x480

' -1 800x 600

' -2 1024 x 768

' -3 1280x 1024
' -4 1600x 1200

' -5 1152x864 OR 1152 x 870

Dim ActiveForm As Object
Dimi AsInteger
Dim D(200, 3) AsSingle

On Error GoTo errorHandler

If ScaeFactor = 1 Then GoTo Done

If ScaleFactor <= 0 Then ScaleFactor =
ezGetScal eFactor(Scal eFactor)

If EchoOff Then DoCmd.Echo False
Set ActiveForm = xForm

'If form in datasheet view then don't resize
If xForm.CurrentView <> 1 Then GoTo Done

'If the form is maximized then don't resize
If IsZoomed(xForm.hwnd) <> 0 Then GoTo Done

With ActiveForm
If ScaleFactor > 1 Then 'form is growing
‘deal with section heights and form width first
On Error Resume Next 'handle error for non-existent
sections
Fori=0To4
.Section(i).Height = .Section(i).Height *
Sca eFactor
Nexti
On Error GoTo errorHandler
Width = Width * ScaleFactor
End If

'save old dimensions of subforms/groups/tabs
Fori=0To.Count-1
Select Case .Controls(i).Control Type
Case acOptionGroup, acSubform, acTabCltl
D(i, 0) = .Controls(i).Width
D(i, 1) = .Controls(i).Height

D(i, 2) = .Controls(i).Left
D(i, 3) = .Controls(i).Top
End Sdlect
Next i

‘deal with controls
Fori=0To.Count-1
Select Case .Controls(i).Control Type
Case acOptio nGroup, acPage
‘do nothing now
Case acTabCltl
.Controls(i). TabFixedWidth =
.Controlg(i). TabFixedWidth * ScaleFactor
.Controls(i). TabFixedHeight =
.Controls(i). TabFixedHeight * ScaleFactor
If .Controls(i).Left < 0 Then .Controls(i).Left = 0
.Controls(i).Left = .Controls(i).Left * ScaleFactor
.Controls(i).Top = .Controls(i).Top * ScaleFactor
.Controls(i).Width = .Control(i).Width *
ScaleFactor
.Controlg(i).Height = .Controls(i).Height *
ScaleFactor
.Controls(i).fontsize = .Control (i).fontsize *
ScaleFactor
Case acSubform
On Error Resume Next
ezSizeForm .Contol§(i).Form, ScalefFactor,
False
On Error GoTo errorHandler
CaxeElse
On Error Resume Next
If .Controls(i).Left < 0 Then .Controls(i).Left =0
.Controlg(i).Left = .Controls(i).Left *
ScaleFactor
.Controls(i).Top = .Controls(i).Top *
ScaleFactor
.Controls(i).Width = .Controls(i).Width *
ScaleFactor
.Controls(i).Height = .Controls(i).Height *
ScaleFactor
.Controls(i).fontsize = .Controls(i).fontsize *
ScaleFactor
On Error GoTo errorHandler
End Sdlect
Next i

'fix dimensions of subforms/groups/tabs
If ScaleFactor > 1 Then
On Error Resume Next
Fori=0To4
.Section(i).Height = .Section(i).Height * ScaleFFactor
Next i
On Error GoTo errorHandler
End If
Fori=0To.Count-1
Select Case .Controls(i).Control Type
Case acSubform
.Controlg(i).Width = D(i, 0) * ScaleFactor
.Controls(i).Height = D(i, 1) * ScaleFactor
.Controls(i).Left = D(i, 2) * ScaleFactor
.Controls(i).Top = D(i, 3) * ScaleFactor
End Sdect
Next i
Fori=0To.Count-1
Select Case .Controls(i).Control Type
Case acOptionGroup, acTabCtl
.Controls(i).Left = D(i, 2) * ScaleFactor
.Controls(i).Top = D(i, 3) * ScaleFactor

358

.Controls(i).Width = D(i, 0) * ScaleFactor
.Controls(i).Height = D(i, 1) * ScaleFactor
End Sdlect
Next i

'Resize form dimensions and fit window to form
On Error Resume Next

Fori=0To4

.Section(i).Height =0

Next i
On Error GoTo errorHandler
Width=0
DoCmd.RunCommand acCmdSizeToFitForm
GoTo Done

errorHandler:
If ERR.Number = 2046 Then GoTo Done
MsgBox "Error with control " & .Controls(i).Name &
vbCrLf & _
"L:" & .Controls(i).Left & " -" & D(i, 2) & vbCrLf &

"T:" & .Controls(i).Top & "- " & D(i, 3) & vbCrLf &

"W: " & .Controls(i).Width & "-" & D(i, 0) &
vbCrLf& _

"H:" & .Controls(i).Height & "- " & D(i, 1) &
VbCrLf

Done:
If EchoOff Then DoCmd.Echo True
End With

End Sub

Function ezGetScreenRes() As String
"Thisfunction returns the windows screen size
Dim R AsRECT

Dim hwnd AsLong

Dim RetVa AsLong

hwnd = GetDesktopWindow()
RetVa = GetWindowRect(hwnd, R)
ezGetScreenRes = (Rx2- Rx1) & "X" & (Ry2- Ryl)

End Function

Public Function ezGetScaleFactor(S) As Single
'Returns a scale factor for resizing based on the passed
parameter S
" which should represent the screen size aform was designed
for
' the scale factor returned is based on the current screen
resolution
Select Case S
Case0 '640x 480
Select Case ezGetScreenRes
ezGetScaleFactor = 1
Case"800x600"
ezGetScaeFactor = 1.2
Case "1024x768"
ezGetScaeFactor = 1.5
Case "1152x864", "1152x870"
ezGetScaeFactor = 1.7
Case "1280x1024"
ezGetScaeFactor = 1.9
Case "1600x1200"
ezGetScaeFactor = 2.4

End Sdect
Case-1 '800x 600
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.8
Case "800x600"
ezGetScaeFactor = 1
Case "1024x768"
ezGetScaeFactor = 1.2
Case "1152x864", "1152x870"
ezGetScaleFactor =14
Case "1280x1024"
ezGetScaeFactor = 1.5
Case "1600x1200"
ezGetScaeFactor = 1.9
End Sdect
Case-2 '1024 x 768
Select Case ezGetScreenRes
Case "640x480"
ezGetSca eFactor = 0.6
Case "800x600"
ezGetScaeFactor = 0.7
Case "1024x768"
ezGetScaeFactor = 1
Case"1152x864", "1152x870"
ezGetScaleFactor = 1.05
Case "1280x1024"
ezGetScaeFactor = 1.1
Case "1600x1200"
ezGetScaeFactor = 1.4
End Sdect
Case-3 '1280x 1024
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.5
Case "800x600"
ezGetSca eFactor = 0.6
Case "1024x768"
ezGetScaeFactor =0.8
Case "1152x864", "1152x870"
ezGetScaeFactor = 0.9
Case "1280x1024"
ezGetScaleFactor = 1
Case "1600x1200"
ezGetScaeFactor = 1.1
End Sdect
Case-4 '1600x 1200
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.3
Case "800x600"
ezGetScaeFactor = 0.4
Case"1024x768"
ezGetSca eFactor = 0.6
Case "1152x864", "1152x870"
ezGetScaleFactor = 0.65
Case "1280x1024"
ezGetScaeFactor = 0.7
Case "1600x1200"
ezGetScaleFactor = 1
End Sdect
Case-5 '1152x 864 OR 1152 x 870
Select Case ezGetScreenRes
Case "640x480"
ezGetScaeFactor = 0.4
Case "800x600"
ezGetScaleFactor = 0.6
Case "1024x768"

ezGetScaeFactor = 0.8
Case "1152x864", "1152x870"
ezGetScaleFactor = 1
Case "1280x1024"
ezGetScaleFactor = 1.1
Case "1600x1200"
ezGetScaeFactor = 1.4
End Sdect
End Sdlect
If ezl argeFonts Then ezGetScal eFactor =
ezGetScaleFactor / 1.25
End Function
Public Function ezReSize(xForm As Form)
"This subroutine will resize the form based on it's current
dimensions
Dim ActiveForm As Object
Dim strTag As String
Dim SH As Single
Dim SW As Single

On Error GoTo errorHandler
Set ActiveForm = xForm

'If form in datasheet view then don't resize
If xForm.CurrentView <> 1 Then GoTo Done

'If the form is maximized then don't resize
If 1sZoomed(xForm.hwnd) <> 0 Then GoTo Done

'If the form is minimized then don't resize
If Islconic(xForm.hwnd) <> 0 Then GoTo Done

With ActiveForm
If .tag ="Sizing" Then GoTo Done
sirTag = .tag
tag ="Sizing"
'‘Determine size of window and set resize based on
lowest proportion
SH = .WindowHeight / .Section(0).Height
SW = .WindowWidth / Width
If SH > SW Then
ezSizeForm xForm, SW
Else
ezSizeForm xForm, SH
End If
Width=0
On Error Resume Next
tag=strTeg
End With
GoTo Done
errorHandler:
MsgBox ERR.Description
Done:

End Function

Public Function ezl argeFonts() As Boolean
‘Thisfunction returns atrue if large fonts are being used.
Dimhdc AsLong

Dim hwnd AsLong

Dim PrevMapMode As Long
DimtmAsSTEXTMETRIC

'Get the handle of the desktop window

hwnd = GetDesktopWindow()

'Get the device context for the desktop

hdc = GetWindowDC(hwnd)

If hdc Then 'Set the mapping mode to pixels

PrevMapMode = SetMapMode(hdc, 1)

'Get the size of the system font

GetTextMetrics hdc, tm

'Set the mapping mode back to what it was
PrevMapMode = SetMapM ode(hdc, PrevMapMode)
'Release the device context

ReleaseDC hwnd, hdc

360

'If the system font is more than 16 pixels high, then
large fonts are being used
If tm.tmHeight > 16 Then ezL argeFonts = True Else
ezl argeFonts = False
End If

End Function

MODULE-Global Declarations

Option Compare Database
Option Explicit

MODULE DESCRIPTION

'Class Name: Global Declarations.bas

'Author: Pat Flanders & Scott Tufts

'‘Description: Contains al definitions for application global
'variables. Most of these are needed dueto the inability of
'VBA to pass parameters as part of a constructor.

'References. None

Globa gLngMishapToGet As Long
Global gFormNeedsRefresh As Boolean
Globa gBInAddAMishap As Boolean
Global gStrDescription As String
Global gstrDatabaseType As String

A AR A AR A AR A AR A IR A IR A IR A IR A I A h kA hk ko khkhkkhkhkhkhkkkkkx

FUNCTIONS

A AR A AR A IR A IR A IR A IR A Ak bk khhkhkhkkhkhkhkhkhkhkkhhkkkkx

'Function/Sub Name: getDBType()

'Description: Determines the type of database (military or
civilian)

'based on the SQL serverer thlDatabaseType settings.
'Input: None

'‘Output: None

'References. None

Public Sub getDBType()

Dim conn As New ADODB.Connection
Dim rst As New ADODB.Recordset
Dim sTempHolder As String

'Open a connection to the data
Set conn = Application.CurrentProject.Connection

'Open arecordset with a keyset cursor
rst.Open "SELECT * FROM thlDatabaseType", conn,
adOpenDynamic, adL ockOptimistic, adCmdText

‘Walk the recordset

Do Until rst.EOF
If ret.Fields(0) ="M" Then sTempHolder ="M"
rs.MoveNext

Loop

If sTempHolder ="M" Then

361

Global Declarations.gstrDatabaseType = "M"
Else

Global Declarations.gstrDatabaseType = "C"
End If

'Clean up
rst.Close
conn.Close

End Sub

'Function/Sub Name: toggleDBType()

'‘Description: Toggles the current investigation module DB
type.

‘Input: None
'Output: Success or failure.

'References. None

Public Function toggleDBType() As Boolean

On Error GoTo StartError
Global Declarations.getDBType

DoCmd.SetWarnings (False)

If GlobalDeclarations.gstrDatabaseType ="M" Then
DoCmd.RunSQL "UPDATE thl DatabaseType SET
tblDatabaseType.DatabaseType=" & Chr(34) & "C" &
Chr(34) & " WHERE thlDatabaseType.DatabaseType=" &
Chr(34) & "M" & Chr(34) & ";"
Globa Declarations.gstrDatabaseType = "C"
Else
DoCmd.RunSQL "UPDATE thlDatabaseType SET
tblDatabaseType.DatabaseType =" & Chr(34) & "M" &
Chr(34) & " WHERE thlDatabaseType.DatabaseType=" &
Chr(34) & "C" & Chr(34) & ";"
Global Declarations.gstrDatabaseType = "M*"
End If
DoCmd.SetWarnings (True)

Formdl[1-0-0-0-frm-SelectMishap].Refresh
toggleDBType = True
ExitSub:
Exit Function
StartError:
toggleDBType = False
GoTo ExitSub

End Function

'Function/Sub Name: getDBTypeFromFile()

'Description: Determinese the type of database (military or
civilian)

'based on the HFACS.ini file settings.

‘Input: None

'Output: Success or failure.

'References: None

Public Function getDBTypeFromFile() As Boolean

Dim sFileName As String
Dim oINIFile AsINIFile
Set olNIFile= New INIFile
olNIFilelnit ("HFACS")

On Error GoTo StartError
Screen.MousePointer = 11
Debug.Print "Reading ini data. . ."

' Get name for .ini filein the SY STEM directory
skileName = olNIFile.GetlniFileName

Debug.Print sFileName

' Read vaues from .ini file. Specify file name, section, and
key.
Global Declarations.gstrDatabaseType =
ol NIFile ReadFrominiFile(sFileName, _
"DBTYPE", "DBtype")
Debug.Print "Just read in " &
Global Declarations.gstrDatabaseType

Screen.MousePointer =0

If Trim(GlobalDeclarations.gstrDatabaseType) =" Then
getDBTypeFromFile = False

Else
getDBTypeFromFile = True

End If

ExitSub:
Set olNIFile = Nothing
Exit Function

362

StartError:
Screen.MousePointer = 0
geeDBTypeFromFile= Fase
Resume ExitSub

End Function

'Function/Sub Name: synchFileDBTypeToDbVaue()
'‘Description: Ensures that this program opensin the same
mode (civilian

‘or military) asthe HFACS instance that launched it.
'Input: None

‘Output: None

'References. None

Public Sub synchFileDBTypeToDbValue()

Dim sTempNameHolder As String
If GlobalDeclarations.getDBTypeFromFile = True Then
sTempNameHolder =
Global Declarations.gstrDatabaseType
Globa Declarations.getDBType
If Trim(sTempNameHolder) <>
GlobalDeclarations.gstrDatabaseType Then
Global Declarations.toggleDBType
'Else
'‘MsgBox "Noini fileto read.”
End If

ExitSub:
Exit Sub

StartError:
GoTo ExitSub

End Sub

APPENDIX L. MODIFIED VB SETUP1

CLASSINIFile

Option Explicit

' CLASS DESCRIPTION
"B
'‘ClassName: INIFile.cls

'Author: Microsoft Corporation. Modified by Pat Flanders
&
Scott Tufts

"This class creates .ini File objects used to create, delete, set,
‘and get valuesin astandard format Microsoft .ini file. It
uses

‘callsto the Windows AP for efficiency.

'References. Windows APl

'NOTE: See function headers for internal component
references.

Ykkkkkkkkhkkkkhkkkkhkkkkhkkkhkkkhkkhkhkkhkhkkhkhkkhkkkkkkhkkkkhkkkkkkkx

PROPERTIES

Tkhk KK h AR KKK KKK KKK A IR A IR A IR A I A A h A Ak dhkhkhhkhkhkkhkhkkhkhkkhkkkx

"The name of theini fileto read
"##Model1d=3B294CFD03A9
Private msWbkName As String

'"API Wrapper Code - provided by Microsoft
"##Model|d=3B294CFE0000

Private Declare Function WritePrivateProfileString Lib
"kernel32" Alias "WritePrivateProfileStringA" (ByVal
IpApplicationName As String, ByVa IpKeyName As String,
ByVal IpString As String, ByVad IpFileName As String) As
Long

'##Model|d=3B294CFEQOAB

Private Declare Function GetPrivateProfileString Lib
"kernel32" Alias"GetPrivateProfileStringA" (ByVal
IpApplicationName As String, ByVal |pKeyName As Any,
ByVa IpDefault As String, ByVa IpReturnedString As
String, ByVal nSize AsLong, ByVal IpFileName As String)
AslLong

'##M odel | d=3B294CFE0196

Private Declare Function GetWindowsDirectory Lib
"kernel32" Alias "GetWindowsDirectoryA" (ByVal |pBuffer
As String, ByVal nSize AsLong) AsLong

Tkkkkkhkhkhkhhhhhhhhhhhhhhhhhhhhhkhkhhhhhkhhhhhkkkkkk

' FUNCTIONS

Tkkkkkhkhkhkhhhhhhhhhhhhhhhhhhhhhkhkhhhhhkhhhhhkkkkkk

363

'Function/Sub Name: Init()

'‘Description: If aninstance of aclassis created using the
psuedo-

‘constructors fromthe Constructors.bas module, this function
is

'called to passinitial values, thereby mimicking the bahavior
of

‘aconstructor with arguments. Passed in valuesare all
required, but

'the Constructors.New_INIFile() function automatically sets
'passed-in values to global variable valuesif they are | eft
‘blank.

'Input:
' sPassedinWorkBookName
manipulate

- Name of the..ini fileto

‘Output: None

'References:

- Congtructors.bas

'##Model|d=3B294CFE0213
Friend Sub Init(sPassedinWorkBookName As String)

msWhkName = sPassedInWorkBookName

End Sub

'Function/Sub Name: WriteTolniFile()

'‘Description: Write asection, key, and valueto an .ini file.

'Input:

' drSection - Nameof asection

' drkey - Name of akey

' grVdue - Name of akey value

' drFileName - Name of thefileto manipulate

'Output: Success or failure

'References. None

'##Model | d=3B294CFE0251

Friend Function WriteTol niFile(strSection As String, strkey
As String, strVaue As String, strFileName As String) As
Boolean

' Passin name of section, key, key value, and file name.
If WritePrivatePrdfileString(strSection, strkey, _
strVaue, striFileName) Then

WriteTolniFile = True

Else
MsgBox "Error writing to .ini file: " & Err.LastDIIError
WriteTolniFile = False

End If

End Function

'Function/Sub Name: Deletel ni Section()

'Description: Delete a section and al of its keysfrom an .ini
file.

'Input:
' drSection - Nameof asection
' drFileName - Name of the file to manipulate

'Output: Successor failure

'References. None

'##Model|d=3B294CFE02DE
Friend Function Deletel ni Section(strSection As String,
strFileName As String) As Boolean

If WritePrivateProfileString(strSection, vbNullString, _
VbNullString, strFileName) Then
Deletel niSection = True
Else
MsgBox "Error deleting section from .ini file: " _
& Err.LastDIIError
Deletel niSection = False
End If

End Function

'Function/Sub Name: DeletelniKey()
'Description: Delete akey and its value from an .ini file.

'Input:

' drSection
' srkey

' grFileName

- Name of asection
- Name of akey

- Name of thefile to manipulate
'‘Output: Success or failure

'References. None

"##M odel |[d=3B294CFE033C
Friend Function Deletel niK ey(strSection As String, strkey
As String, strFileName As String) As Boolean

If WritePrivateProfileString(strSection, strkey, _
VbNullString, strFileName) Then
DeletelniKey = True
Else
MsgBox "Error deleting section from .ini file: " _
& Err.LastDIIError
DeletelniKey = Fase
End If

End Function

'Function/Sub Name: GetIniFileName()

364

'Description: Return namefor .ini file. Name includes name
of

‘workbook fileand ".ini". File path can be made the Windows
directory.

'by uncommenting the code below

‘Input: None
'Output: String path (e.g. C:\windows\HFACS.ini).

'References. None

'##Model|d=3B294CFE03A9
Friend Function GetlniFileName() As String

Dim strwWinDir As String
DimiIngLen AsLong

' Create null-terminated string to passto
' GetWindowsDirectory.
' strwinDir = String$(255, vbNullChar)

" IngLen = Len(strWinDir)

' Return Windows directory.
GetWindowsDirectory strwWinDir, IngLen

' Truncate before first null character.
strWinDir = Left(strWinDir, _
InStr(strWinDir, vbNullChar) - 1)

"Return .ini file name.
' GelniFileName = strwWinDir & "\' & mswWbkName &

".ini
GetIniFileName = App.Path & "\" & mswWbkName& ".ini"

End Function

'Function/Sub Name: ReadFrominiFile()

'Description: Read avalue from an .ini file, given thefile
name,
'section, key, and default value to return if key isnot found.

'Input:

' drSection - Nameof asection

' drkey - Name of akey

' dgrDefault - Default name of akey vaue

' drFileName - Name of thefileto manipulate

'Output: Success or failure

'References. None

'##Model1d=3B294CFE03D8

Friend Function ReadFromlniFile(strFileName As String,
strSection As String, strKey As String, Optiona strDefault
As String ="") As String

Dim strVaue As String

" Fill string buffer with null characters.
strVaue = String$(255, vbNullChar)

' Attempt to read value. GetPrivateProfileString

' function returns number of characters written
" into string.
If GetPrivateProfileString(strSection, strkey, _
strDefault, strValue, Len(strvVaue), _
strFileName) > 0 Then
" If characters have been written into string, parse string
"and return.
strValue = Left(strVaue, InStr(strValue, vbNullChar) -
1)

365

ReadFrominiFile = strvVdue

Else
' Otherwise, return a zero-length string.
ReadFrominiFile = strDefault

End If

End Function

SETUP 1 Modification Code

The Package & Deployment Wizard “ Setupl.exe” program
requires modification for use with the HFACS program.
There aretwo areasthat are modified:

1) Code for updating the HFACS.ini file
with the location that the user installs HFACs.
Thisishow HFACS knows where to look for its
components.

2) Code for adding the HFACS Icon
(rather thanthe M S Access | con) to the START
menu bar in Windows. This providesamore
professional appearance.

Thefollowing section outlines the modifications needed for

item 1above. Item 2 instructions can be found in Microsoft
Knowledgebase article Q240965.

MAKE THE FOLLOWING CHANGESTO THE
STANDARD SETUP1.VBP:

Stepl - Modifications to basSetupl
'Added by Pat Flanders for use with INIFile Class and

copy.frm Unload event
Global myAppPath As String

Step2 —Modificationsto frmBegin

Private Sub Form_QueryUnload(Cancel As Integer,
UnloadM ode As I nteger)

366

kkkk

' Set agloba variable for the app.path

basSetupl.myAppPath = Me.lblDestDir.Caption

HandleFormQueryUnload UnloadMode, Cancel, Me
End Sub

Step3 —Moadificationsto frmCopy
Private Sub Form_Unload(Cancel As Integer)

Tkkkkk

" Now that the files have been copied, write an entry to the
iniFilefor app.path

DimthelNIFile AsINIFile

Dim strFileName As String

Dim writeSuccess As Boolean

Set thelNIFile= New INIFile

striileName = thel NIFile.GetIniFileName

" Attempt to write valuesto .ini file. Specify

' file name, section, and key.

writeSuccess =

thelNIFile.WriteTolniFile("CONNECTION",
"InstallDir", basSetupl.myAppPath, strFileName)

Set thelNIFile = Nothing

End Sub

Step4 —Import the INIFile class used in the HFACS
Connection Component.

APPENDIX M. STORED PROCEDURES

1-0-0-1-flanAllMishapsByDate

Alter Procedure[1-0-0-1-flanAllMishapsByDate]

@MishaplD int =NULL
)

As
set nocount on

SELECT MishaplD,
MishapDate,

Aircraft_FK,
Class FK,
tblMishapClass.MishapClassDefinition,
Type FK,
tbiMishapType.MishapTypeDefinition,
LocationID_FK,
tblMishapL ocation.MishapL ocation,
OrglD_FK,
tblOrganization.OrgName,
ShortDescription,
LongDescription ,
tbl DatabaseType.DatabaseType

FROM (tbl DatabaseType INNER JOIN thIMishaps ON thlDatabaseType.DatabaseType = thlMishaps.DatabaseType)
LEFT JOIN thiMishapL ocation ON thblMishaps.LocationID_FK = tblMishapL ocation.MishapL ocationl D
LEFT JOIN thIMishapClass ON tbiMishaps.Class FK = thiMishapClass.MishapClassCode
LEFT JOIN thiMishapType ON thIMishaps.Type FK = thiM ishapType.MishapTypeCode
LEFT JOIN tblOrganization ON thbiMishaps.OrglD_FK = tblOrganization.OrglD

WHERE Mishapl D=COALESCE(@Mishapl D, tblMishaps.Mishapl D) and
tblMishaps.DatabaseType=tbl DatabaseType.DatabaseType
ORDERBY MishapDate

return

367

1-0-0-2-flanAllMishapF actorsByl D

Alter Procedure[1-0-0-2-flanAllMishapFactorsBy| D]
(

)
As

set nocount on

@MishaplD_FK int =NULL

SELECT tbIMishapFactors.FactorID,
tblMishapFactors.MishaplD_FK,
tblMishapFactors.FactorSummary,
tblMishapFactors.[3rdLevel Code FK],
tblFactors.[3rdLevel Desc],
thlFactors.[2ndL evel Code],
tblFactors.[2ndLevel Desc],
tblFactors[1stLevel Code],
tblFactors.[1stLevel Dec)

FROM tblMishapFactors LEFT JOIN thlFactors ON thlMishapFactors.[3rdLevelCode FK] =
thlFactors.[3rdLevel Code]

WHERE MishaplD_FK=@MishaplD_FK
ORDER BY tblMishapFactors.Factor|D

return

368

1-0-0-3-flanl nsertF actor

Alter Procedure[1-0-0-3-flanl nsertFactor]
(

@MishaplD int

)

As

set nocount on
Insert into thlMishapFactors (Mishapl D_FK, FactorSummary,[3rdLevelCode _FK])
Values (@MishaplD, 'Please enter a summary', UNK")

return

369

1-0-0-4-flanl sUser Sysadmin

Alter Procedure[1-0-0-4-flanl sUserSysadmin]

As

DECLARE @IsAdmin int

SELECT IS_SRVROLEMEMBER('sysadmin’) as IsUserOwner

return

370

2-0-0-1-flanCountflanFilteredMishaps

Alter Procedure[2-0-1-1-flanCountflanFilteredMishaps]

As

(

@AC varchar(10) = NULL, --default valueis NULL for dl parameters not specified
@Type varchar(3) = NULL,

@Class varchar(1) = NULL,

@Loc varchar(25)= NULL,

@Svc varchar(10)= NULL,

@Yr datetime = NULL,

@1stLevel varchar(5) = NULL,

@2ndLevel varchar(5) = NULL,

@3rdLevel varchar(5) = NULL

SELECT count(dbo.tblMishaps.Mishapl D) as NumRecords

FROM

WHERE

return

dbo.thlDatabaseType INNER JOIN

dbo.tbiMishapL ocation INNER JOIN

dbo.thiMishapType INNER JOIN

dbo.tblMishaps ON

dbo.tblMishapType.MishapTypeCode = dbo.tbIMishaps.Type FK INNER JOIN
dbo.tbIMishapClass ON

dbo.tblMishgps.Class FK = dbo.thlMishapClass.MishapClassCode ON
dbo.tblMishapL ocation.MishapLocationl D = dbo.thlMishaps.LocationID_FK INNER JOIN
dbo.tblOrganization ON

dbo.tblMishaps.OrglD_FK = dbo.tblOrganization.OrglD ON

dbo.tbl DatabaseType.DaabaseType = dbo.thlMishaps.DatabaseType

dbo.thIMishapsAircraft FK = COALESCE(@AC, dbo.thIMishaps.Aircraft FK) AND
dbo.tbiMishaps.Type FK = COALESCE(@Type, dbo.tblMishaps. Type FK) AND
dbo.tblMishaps.Class FK = COALESCE(@Class, dbo.tbiMishaps.Class FK) AND
dbo.thiMishaps.LocationID_FK = COALESCE(@L oc, dbo.tbiMishaps.LocationID_FK) AND
dbo.tblMishaps.OrglD_FK = COALESCE(@SVvc, dobo.tlMishaps.OrglD_FK) AND
datepart(year,dbo.tblMishaps.MishapDate) = COALESCE(@Y'r, datepart(year,dbo.tbiMishaps.MishapD ate))

371

2-0-0-1-flanFilteredMishapTable

Alter Procedure[2-0-1-1-flanFilteredMishapTable]

(

@AC varchar(10) = NULL, --default valueis NULL for dl parameters not specified
@Type varchar(3) = NULL,
@Class varchar(1) = NULL,
@Loc varchar(25)= NULL,
@Svc varchar(10)= NULL,
@Yr int =NULL,
@1stLevel varchar(5) = NULL,
@2ndLevel varchar(5) = NULL,
@3rdLevel varchar(5) = NULL
)
As
set nocount on

SELECT dbo.thIMishaps.Mishapl D, dbo.tblMishaps.MishapDate,

FROM

WHERE

return

dbo.tbiMishaps.Aircraft FK, dbo.tbiMishaps.Class FK,
dbo.thIMishapClass.MishapClassDefinition, dbo.tbiMishaps.Type FK,
dbo.thlMishapType.MishapTypeDefinition,

dbo.thiMishaps.LocationI D_FK, dbo.tblMishapL ocation.MishapL ocation,
dbo.tblMishaps.OrglD_FK, dbo.tblOrganization.OrgName,
dbo.tblMishaps.ShortDescription, dbo.tblMishaps.L ongDescription,
dbo.tblMishaps.DatabaseType

dbo.thlDatabaseType INNER JOIN

dbo.thlMishapLocation INNER JOIN

dbo.tbIMishapType INNER JOIN

dbo.tblMishaps ON

dbo.tblMishapType.MishapTypeCode = dbo.tbIMishaps.Type FK INNER JOIN
dbo.tbIMishapClass ON

dbo.thiMishaps.Class FK = dbo.thiMishapClass.MishapClassCode ON
dbo.tblMishapL ocation.MishapL ocationI D = dbo.tbiMishaps.LocationlD_FK INNER JOIN
dbo.tblOrganization ON

dbo.thiMishaps.OrglD_FK = dbo.tblOrganization.OrgIlD ON
dbo.thlDatabaseType.DatabaseType = dbo.tblMishaps.DatabaseType

dbo.tblMishaps.Aircraft FK = COALESCE(@AC, dbo.thiMishaps.Aircret FK) AND
dbo.tblMishaps.Type FK = COALESCE(@Type, dbo.tblMishaps. Type FK) AND
dbo.thiMishaps.Class FK = COALESCE(@Class, dbo.tblMishaps.Class FK) AND
dbo.tbiMishaps.LocationID_FK = COALESCE(@L oc, dbo.tbiMishaps.LocationID_FK) AND
dbo.thlMishaps.OrgID_FK = COALESCE(@Svc, dbo.tblMishaps.OrglD_FK) AND
datepart(year,dbo.tblMishaps.MishapDate) = COALESCE(@Y'r, datepart(year,dbo.tblMishaps.MishapDate))

372

2-0-2-1-flanSummaryGetNumbers

Alter Procedure[2-0-2-1-flanSummaryGetNumbers]

(
@AC_Type varchar(10) = NULL,
@Mishap_Type varchar(3) = NULL,
@Mishap_Class varchar(1) = NULL,
@Location varchar(25)= NULL,
@Service varchar(10)= NULL,
@Year int =NULL,
@1stLevel varchar(5) = NULL,
@2ndLevel varchar(5) = NULL,
@3rdLevel varchar(5) = NULL
)

As

Set nocount on

--Insert filtered datainto Temp Filter_Table

SELECT DISTINCT dbo.tblMishaps.MishapID INTO
#Result
FROM dbo.tbIMishaps INNER JOIN
dbo.tblDatabaseType ON
dbo.thlMishaps.DatabaseType=dbo.tbl DatabaseType.Databas
eType INNER JOIN
dbo.tblMishapFactors ON
dbo.thIMishaps.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK INNER JOIN
dbo.tblFactors ON
dbo.thlMishapFactors.[3rdLevel Code FK] =
dbo.thlFactors.[3rdLevel Code]

WHERE dbo.tblMishaps.Aircraft FK =
COALESCE(@AC_Type, dbo.tbiMishaps.Aircraft FK)
AND

dbo.tbiMishaps.Type FK =
COALESCE(@Mishap_Type, dbo.tbiMishaps. Type FK)
AND

dbo.tbiMishaps.Class FK =
COALESCE(@Mishap_Class,dbo. thiMishaps.Class FK)
AND

dbo.tblMishaps.LocationID_FK =
COALESCE(@L ocation, dbo.tbIMishaps.LocationlD_FK)
AND

dbo.tblMishaps.OrgID_FK =
COALESCE(@Service, dbo.tblMishaps.OrglD_FK) AND

datepart(year,dbo.tblMishaps.MishapDate) =
COALESCE(@Y ear,
datepart(year,dbo.tblMishaps.MishapDate)) AND

dbo.tblFactors.[1stL evel Code] =
COALESCE(@1stLevel, dbo.thlFactors[1stLevel Code])
AND

dbo.thlFactors.[2ndLevel Code] =
COALESCE(@2ndLevel, dbo.tblFactors.[2ndL evel Code])
AND

dbo.thlFactors.[3rdLevel Code] =
COALESCE(@3rdLevel, dbo.thlFactors.[3rdLevel Code])
AND

dbo.thlMishaps.DatabaseType=dbo.thl DatabaseType Databas
eType

373

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code FK] AND (

dbo.thlFactors.[1stLevelCode] ='MGY))))) AS
MG,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.Mishapl D) In (

SELECT DISTINCT
#Result.MishaplD

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplI D =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.tblFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.tblFactors.[1stLevelCode] ='MC))))) AS

MC,
(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.Mishapl D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code FK] AND (

dbo.thlFactors.[1stLevelCode] = 'WCY))))) AS
WC,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.MishaplD

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.thlFactors[1stLevelCode] = 'MA)))) AS
MA,
(

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND

dbo.thlFact ors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.thlFactors.[2ndL evel Code] = 'ORG)))))) AS
ORG,

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.MishaplD

FROM #Result, dbo.tbl Factars,
dbo.thlMishapFactors

WHERE #Result.MishaplD =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.tblFactors.[2ndL evel Code] = 'SUP))))) AS
SUP,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rd_evel Code FK] AND (

dbo.tblFactors[2ndLevel Code] = 'MED))))) AS

MED,
(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.MishaplD

FROM #Result, dbo.tbl Factors,
dbo.thlMishapFactors

WHERE #Result.MishapID =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.thlFactors.[2ndL evel Code] = 'CRWY))))) AS
CRW,

(

SELECT Count([Mishapl D])
FROM #Result

WHERE (((#Result.Mishapl D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.thlMishapFactors

WHERE #Result.MishaplD =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code FK] AND (

dbo.thlFactors.[2ndL evel Code] = 'RDY"))))) AS
RDY,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND

dbo.tblFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.thlFactors[2ndLevelCode] = 'ENV))))) AS
ENV,

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.MishaplD

FROM #Result, dbo.tblFactors,
dbo.thlMishapFactors

WHERE #Result.MishaplD =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.thiFactors[2ndLevelCode] = EQP))))) AS
EQP,

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishgpFactors.[3rdLevel Code FK] AND (

dbo.tblFactors[2ndLevel Code] = 'WRK?))))) AS
WRK,

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.thlMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code FK] AND (

dbo.thlFactors[2ndLevel Code] = 'ERRY))))) AS
ERR,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.Mishapl D) In (

SELECT DISTINCT
#Result.MishaplD

FROM #Result, dbo.tbl Factors,
dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND

dbo.thlFactors.[3rdLevel Code] =
dbo.tblMishapFactors.[3rdLevel Code_FK] AND (

dbo.thlFactors.[2ndLevel Code] = 'V10Y)))) AS
VIO,

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.Mishapl D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'PRO))))) ASPRO,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mi shaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'DOCY)))) ASDOC,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'DES))))) ASDES,

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tblMishapFactors

375

WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'RES))))) ASRES,
(

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tbIMishapFactors
WHERE #Result.Mishapl D =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
1DQ)))) ASIDQ,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'OPS))))) AS OPS,

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'PRBY)))) AS PRB,

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.Mishapl D =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.tblMishapFactors.[3rdLevel Code FK] =
'MIS))))) ASMIS,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.Mishapi D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'MNT")))) AS MNT,
(

SELECT Count([Mishapl D])
FROM #Result

WHERE (((#Result.MishapI D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'PHY")))) ASPHY,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.thlMishapFactors.[3rdLevelCode FK] =
'LIMY))))) ASLIM,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'‘COM")))) ASCOM,

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.Mishapl D) In
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.Mishapl D =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.tblMishapFactors.[3rdLevelCode FK] =
'ASS))))) ASASS,
(

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.thlMishapFactors.Mishapl D_FK AND (

dbo.tblMishapFactors.[3rdLevelCode FK] =
'ADA")))) ASADA,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishaplI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'TRGY)))) ASTRG,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.Mishapl D =
dbo.thlMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'CRT")))) ASCRT,

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.Mishal D =
dbo.thlMishapFactors.Mishapl D_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'INF))))) ASINF,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishaplI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishapID =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'LGT"))))) ASLGT,
(

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.t blMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.thlMishapFactors.[3rdLevelCode FK] =
'WXE))))) ASWXE,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'EHZ")))) ASEHZ,

(

SELECT Count([Mishapl D])
FROM #Result

WHERE (((#Result.Mishapl D) In (

SELECT DISTINCT
#Result.Mishapl D

FROM #Result, dbo.thlMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.tblMishapFactors.[3rdLevel Code FK] =
'DMG))))) AS DMG,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'UNA")))) ASUNA,
(

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.Mishapl D =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'DUCY))))) AS DUC,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'CONY)))) AS CON,

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishaplI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'OBS))))) ASOBS,

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.tbiMishapFactors.[3rdLevelCode FK] =
INAY)))) AS INA,

377

(
SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.thlMishapFactors.Mishapl D_FK AND (

dbo.tblMishapFactars.[3rdLevel Code FK] =
'‘ATTY)))) ASATT,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishaplI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishapID =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'JDGY))))) ASIDG,
(

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevelCode FK] =
'KNWY))))) ASKNW,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.MishaplD
FROM #Result, dbo.tblMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'SKLY)))) AS SKL,

(
SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.thlMishapFactors
WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'ROUY)))) ASROU,

SELECT Count([MishaplD])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tblMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'IFCY))))) ASIFC,
(

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.MishapI D) In (
SELECT DISTINCT
#Result.Mishapl D
FROM #Result, dbo.tblMishapFactors
WHERE #Result.Mishapl D =
dbo.tblMishapFactors.MishaplD_FK AND (

dbo.thlMishapFactors.[3rdLevel Code FK] =
'FLG))))) ASFLG,

SELECT Count([Mishapl D])
FROM #Result
WHERE (((#Result.Mishapl D) In (

378

SELECT DISTINCT
#Result.MisheplD

FROM #Result, dbo.thlMishapFactors

WHERE #Result.MishaplD =
dbo.tblMishapFactors.Mishapl D_FK AND (

dbo.tblMishapFactors.[3rdLevel Code FK] =
'EXC?)))) ASEXC,

SELECT Count([#Result].[Mishapl D])
FROM #Result)
AS TotaMishaps;

return

2-0-2-1-flanSummaryGetRecords

Alter Procedure[2-0-2-1-flanSummaryGetRecords]
(

@AC varchar(10) =
NULL,

@Type varchar(3) =
NULL,

@Class varchar(1) =
NULL,

@Loc varchar(25)=
NULL,

@Svc varchar(10)=
NULL,

@Yr int =
NULL,

@1stLevel varchar(5) =
NULL,

@2ndLevel varchar(5) =
NULL,

@3rdLevel varchar(5) =
NULL

)

As
set nocount on

SELECT DISTINCT dbo.tblMishapFactors[MishaplD_FK]
INTO#Result

FROM dbo.thiMishapFactors INNER JOIN
dbo.tblFactors ON
dbo.tblMishgpFactors.[3rdLevel Code FK] =
dbo.tbl Factors.[3rdLevel Code]

WHERE dbo.thlFactors.[1stLevel Code] =
COALESCE(@1stLevel, dbo.thl Factors[1stLevel Code])
AND

dbo.thlFactors.[2ndLevel Code] =
COALESCE(@2ndLevel, dbo.tblFactors.[2ndL evel Code])
AND

dbo.tbl Fectors.[3rdLevel Code] =
COALESCE(@3rdLevel, dbo.tbl Factors.[3rdLevel Code])

ORDER BY dbo.thIMishapFactors[MishaplD_FK]

---Inner Query
SELECT

#Result.[MishaplD_FK] ,
dbo.thlMishaps.[Mishapl D],
dbo.tblMishaps.[MishapDate],
dbo.tblMishaps.[Aircraft_FK],
dbo.tblMishaps,[Class_FK],
dbo.tbiMishaps[Type FK],

379

dbo.tbIMishaps.[LocationID_FK],
dbo.tblMishaps[OrgID_FK],
dbo.tblMishaps.[DatabaseType],
dbo.tblMishaps.[ShortDescription],
dbo.tblMishaps.[LongDescription],
dbo.tblMishapClass.[MishapClassCode],
dbo.tblMishapClass.[MishapClassDefinition],
dbo.tblMishapL ocation.[MishapL ocationl D],
dbo.tblMishapL ocation.[MishapL ocation],
dbo.tblMishapType.[MishapTypeCode],
dbo.tbiMishapType .[MishapTypeDefinition],
dbo.tblOrganization .[OrgI D],
dbo.tblOrganization .[OrgName]

FROM #Result LEFT JOIN

dbo.tbiMishaps ON
dbo.tblMishaps.Mishapl D=#Result.[Mishapl D_FK] INNER
JOIN

dbo.tblDatabaseType ON
dbo.tblMishaps.DatabaseType=dbo.tbl DatabaseType.Databas
eType INNER JOIN

dbo.tbIMishapClass ON
dbo.thiMishaps.Class_FK=dbo.thlMishapClass.MishapClass
Code INNER JOIN

dbo.tblMishapL ocation ON
dbo.thlMishaps.L ocationl D_FK=dbo.tblMishapL ocation.Mis
hapLocationID INNER JOIN

dbo.tbiMishapType ON
dbo.thIMishaps. Type_FK=dbo.tblMishapType.MishapTypeC
ode INNER JOIN

dbo.tblOrganization ON
dbo.tblMishaps.OrglD_FK=dbo.tblOrganization .OrglD

WHERE dbo.thiIMishaps.Aircraft FK =
COALESCE(@AC, dbo.thlMishaps.Aircraft_FK) AND

dbo.tbiMishaps.Type FK = COALESCE(@Type,
dbo.thlMishaps.Type FK) AND

dbo.tbhlMishaps.Class FK =
COALESCE(@Class, dbo.thlMishaps.Class FK) AND

dbo.tblMishaps.LocationID_FK =
COALESCE(@L oc, dbo.tblMishaps.LocationlD_FK) AND

dbo.tblMishaps.OrglD_FK = COALESCE(@Svc,
dbo.thlMishaps.OrglD_FK) AND

datepart(year,dbo.tbl Mishaps.MishapDate) =
COALESCE(@YT,
datepart(year,dbo.tblMishaps.MishapDate)) AND

dbo.tblMishaps.DatabaseType=dbo.tbl DatabaseType.Databas
eType

return

4-0-1-0-flanCrossT abF or Graphing

Alter Procedure[4-0-1-0-flanCrossTabForGraphing]

(
@colLeft varchar(500),
@col Top varchar(500)
As
/* set nocount on */
execute dbo.rac @grpcol=@col L eft, @pvtcol=@col Top, @transform="count(*)', @from ='dbo.vwFanForGraphs,
@where=",
@printagg="n',@grand_totals='n', @row_totals='n', @emptycel|="0'

return

380

8-0-0-0-NelsonReportAllMishaps

Alter Procedure[8-0-0-0-Nel sonReportAllMishaps]

(
@AC_Type varchar(10) = NULL,
@Mishap_Type varchar(3) = NULL,
@Mishap_Class varchar(1) = NULL,
@Location varchar(25)= NULL,
@Service varchar(10)= NULL,
@Year int =NULL,
@1stLevel varchar(5) = NULL,
@2ndLevel varchar(5) = NULL,
@3rdLevel varchar(5) = NULL
)

As

Set nocount on

--Insert filtered datainto Temp Filter_Table

SELECT DISTINCT thiMishaps.MishaplD INTO
#blTemp_Filter_Table
FROM thiMishaps INNER JOIN
tblDatabaseType ON

tblMishaps.DatabaseType=tbl DatabaseType.DatabaseType
INNER JOIN

tblMishapFactors ON
tbiMishaps.Mishapl D = thiMishapFactors.Mishapl D_FK
INNER JOIN

thlFactors ON
tblMishapFactors.[3rdLevelCode FK] =
tblFactors.[3rdLevel Code]

WHERE tblMishaps.Aircraft FK =
COALESCE(@AC_Type, thiMishaps.Aircraft_FK) AND
tblMishaps.Type FK =
COALESCE(@Mishap_Type, thiMishaps. Type_FK) AND
tbiMishaps.Class FK =
COALESCE(@Mishap_Class, thiMishaps.Class_ FK) AND
tbiMishaps.LocationID_FK =
COALESCE(@L ocdtion, thiMishaps.LocationID_FK) AND
tblMishaps.OrglD_FK = COALESCE(@Service,
tblMishaps.OrgID_FK) AND
datepart(year,tblMishaps.MishapDate) =
COALESCE(@Y ear, datepart(year,tbl Mishaps.MishapDate))
AND
tblFactors.[1stLevel Code] =
COALESCE(@1stLeve, thiFactors.[1stL evel Code]) AND
thlFactors.[2ndLevel Code] =
COALESCE(@2ndLevel, thlFactors.[2ndLevel Code]) AND
thlFactors.[3rdLevelCode] =
COALESCE(@3rdLevel, thlFactors.[3rdLevel Code]) AND

tblMishaps.DatabaseType=tbl DatabaseType.DatabaseType

(

SELECT Count([MishaplD])

FROM #tblTemp_Filter_Table

WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT

#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,

thlFactors, thMishapFactors

381

WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND

tblFactors.[3rdLevel Code]
= thlMishapFactors.[3rdLevel Code FK] AND (

thlFactors.[1stL evel Code]
='MG))))) ASMG,

(
SELECT Count([Mishapl D])
FROM #blT emp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblFactors, thiMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= thlMishapFactors.[3rdLevel Code FK] AND (
thlFactors.[1stL evel Code]
='MC))))) ASMC,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_TableMishaplD
FROM #tblTemp_Filter_Table,
tblFactors, thiMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= thlMishapFactors.[3rdLevel Code FK] AND (
thlFactors[1stLevel Co de]
='WC))))) ASWC,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table MishaplD
FROM #tblTemp_Filter_Table,
thlFactors, thlMishapFactors
WHERE
#tbl Temp_Filter_TableMishaplD =
tblMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= thlMishapFactors.[3rdLevel Code FK] AND (
thlFactors.[1stL evel Code]
='MAY)) ASMA,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table MishaplD
FROM #tblTemp_Filter_Table,
thlFactors, thlMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND
thlFactors.[3rdLevel Code]
= thiIMishapFactors.[3rdLevelCode FK] AND (

tblFactors.[2ndL evel Code]
='ORG))))) ASORG,

(
SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblFactors, thlMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= tblMishapFactors.[3rdLevelCode FK] AND (
tblFactors.[2ndL evel Code]
='SUP))))) AS SUP,

SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblFactors, thlMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
tbIMishapFactors.[3rdLevel Code FK] AND (
tblFactors.[2ndL evel Code]

='MED))))) ASMED,

(
SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table MishaplD
FROM #tblTemp_Filter_Table,
tblFactors, thIMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= tblMishapFactors.[3rdLevel Code FK] AND (
tblFactors.[2ndL evel Code]
='CRW")))) ASCRW,
(

SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblFactors, thlMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
tbiMishapFactors.[3rdLevel Code FK] AND (
tblFactors.[2ndL evel Code]

='RDY")))) ASRDY,
(

SELECT Count([Mishapl D])

FROM #tblTemp_Filter_Table

WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT

#tblTemp_Filter_Table.MishaplD

382

FROM #tblTemp_Filter_Table,
tblFactors, thlMishapFactors
WHERE
#tbl Temp_Filter_Table.MishapID =
tbiMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= tbIMishapFactors.[3rdLevelCode FK] AND (
tblFactors.[2ndL evel Code]
='ENV")))) ASENV,

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblFactors, t blMishapFactors
WHERE
#tbl Temp_Filter_Table.MishaplD =
thiMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
tblMishapFactors.[3rdLevel Code_FK] AND (
tblFactors.[2ndL evel Code]

(= 'EQP))))) AS EQP,

SELECT Count([MishaplD])
FROM #tbl Temp_HRlter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblFactors, thMishapFactors
WHERE
#tbl Temp_Filter_TableMishaplD =
tbiMishapFactors.MishaplD_FK AND
tblFactors[3rdL evel Code]
= thIMishapFactors.[3rdLevel Code_FK] AND (
tblFactors.[2ndL evel Code]
='"WRK"))))) ASWRK,

(
SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblFactors, thlMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
thiMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= thIMishapFactors.[3rdLevel Code_FK] AND (
tblFactors.[2ndL evel Code]
='ERR))))) ASERR,

(
SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblFactors, thMishapFactors
WHERE
#tbl Temp_Filter_TableMishaplD =
tbiMishapFactors.MishaplD_FK AND
tblFactors.[3rdLevel Code]
= thIMishapFactors.[3rdLevel Code_FK] AND (

tblFactors.[2ndL evel Code]
='VIO))))) AS VIO,

(
SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'PROY)))) ASPRO,
(

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_TableMishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tbiMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tbIMishapFactors.[3rdLevel Code FK] =
'DOCY)))) ASDOC,

SELECT Count([MishaplD])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_Table.MishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'DES))))) ASDES,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_TableMishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tbiMishapFactors
WHERE
#blTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'RES))))) AS RES,
(

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblMishapFactors

383

WHERE
#tbl Temp_Filter_TableMishapID =
thiMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
1DQ)))) ASIDQ,

(
SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tblTemp_Filter_Table.MishaplD =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'(OPS))))) ASOPS,

SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapI D) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishaplD =
thiMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'PRBY)))) AS PRB,

SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tblTemp_Filter_Table.MishaplID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'MIS))))) ASMIS

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapI D) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tbiMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'MNT?))))) AS MNT,
(

SELECT Count([Mishapl D])

FROM #tblTemp_Filter_Table

WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT

#tblTemp_Filter_Table.MishaplD

FROM #tblTemp_Filter_Talle,
tblMishapFactors

WHERE
#tbl Temp_Filter_TableMishapID =
tbiMishapFactors.MishaplD_FK AND (

tbiMishapFactors.[3rdLevel Code FK] =
'PHY™")))) ASPHY,

SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tbiMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'LIMY)))) ASLIM,

SELECT Count([MishapID])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
thiMishapFactors.MishaplD_FK AND (

tbIMishapFactors[3rdLevel Code FK] =
'COM")))) AS COM,

(
SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'ASS))))) ASASS,
(

SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapI D) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
thiMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'ADAY)))) AS ADA,

SELECT Count([Mishapl D])
FROM #tbl Temp_Filter Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (

384

SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD

FROM #tbl Temp_Filter_Table,
tblMishapFactors

WHERE
#tbl Temp_Filter_Table.MishapID =
tblMishapFactors.Mishapl D_FK AND (

tbiMishapFactors.[3rdLevelCode FK] =
"TRG))))) ASTRG,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#blTemp_Filter_TableMishaplD =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'CRT"))))) ASCRT,
(

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishaplD =
thiMishapFactors.MishaplD_FK AND (

tbiMishapFactors.[3rdLevelCode_FK] ='INF)))))
ASINF,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tbiMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'LGTY))))) ASLGT,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tbIMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'WXE))))) ASWXE,

SELECT Count([Mishapl D])

FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (

SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD

FROM #tbl Temp_Filter_Table,
tblMishapFactors

WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.Mishapl D_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'EHZ"))))) ASEHZ,

SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_TableMishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#blTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'DMG))))) ASDMG,

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tblMishapFactors.Mishapl D_FK AND (

tbiMishapFactors.[3rdLevel Code FK] =
'UNAY)))) ASUNA,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tbiMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'DUCY))))) ASDUC,
(

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
thiMishapFactors.MishaplD_FK AND (

tbiMishapFactors.[3rdLevel Code FK] =
'CON")))) AS CON,

385

(
SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevel Code FK] =
'OBS))))) ASOBS,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_TableMishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table MishaplD
FROM #tblTemp_Filter_Table,
tbiMishapFactors
WHERE
#tbl Temp_Filter_TableMishaplD =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'INAY)))) ASINA,
(

SELECT Count([MishaplD])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tblMishapFactors.Mishapl D_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'‘ATT")))) ASATT,

SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_TableMishapID) In (
SELECT DISTINCT
#tblTemp_Filter_TableMishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#blTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'JDGY)))) ASIDG,

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishaplD =
tblMishapFactors.Mishapl D_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'KNW))))) ASKNW,

SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapI D) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'SKLY))) AS KL,

SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In(
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'ROUY)))) AS ROU,
(

SELECT Count([MishaplD])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_TableMishapID) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tbiMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

386

tblMishapFactors.[3rdLevelCode FK] ="IFC"))))
ASIFC,

(
SELECT Count([Mishapl D])
FROM #tbl Temp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapI D) In (
SELECT DISTINCT
#tbl Temp_Filter_Table.MishaplD
FROM #tblTemp_Filter_Table,
tblMishapFactors
WHERE
#tbl Temp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'FLG))))) ASFLG,

SELECT Count([Mishapl D])
FROM #tblTemp_Filter_Table
WHERE (((#tbl Temp_Filter_Table.MishapID) In (
SELECT DISTINCT
#tblTemp_Filter_Table.MishaplD
FROM #tbl Temp_Filter_Table,
tblMishapFactors
WHERE
#tblTemp_Filter_TableMishapID =
tblMishapFactors.MishaplD_FK AND (

tblMishapFactors.[3rdLevelCode FK] =
'EXC))))) ASEXC,
(

SELECT Count([#tbl Temp_Filter_Tabl€e].[Mishapl D])
FROM #tblTemp_Filter_Table)
AS TotaMishaps;

return

8-0-0-1-flanReportByAircraft

Alter Procedure[8-0-0-1-flanReportByAircraft]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (

Aircraft_FK varchar(255),

ADA int DEFAULT 0,
ASS int DEFAULTO,
ATT int DEFAULT 0,
COM int DEFAULT O,
CON int DEFAULT 0,
CRT int DEFAULT O,
DES int DEFAULT 0,
DMG int DEFAULT 0,
DOC int DEFAULT 0,
DUCint DEFAULT O,
EHZ int DEFAULT O,
EXCint DEFAULT O,
FLG int DEFAULT 0,
IDQ int DEFAULT O,
IFC int DEFAULT O,
INA int DEFAULT 0,
INF int DEFAULT O,
JDG int DEFAULT 0,
KNW int DEFAULT 0,
LGT int DEFAULT O,
LIM int DEFAULT O,
MIS int DEFAULT 0,
MNT int DEFAULT 0,
OBS int DEFAULT O,
OPS int DEFAULT 0,
PHY int DEFAULT 0,
PRB int DEFAULT O,
PRO int DEFAULT O,
RES int DEFAULT O,
ROU int DEFAULT 0,
SKL int DEFAULT 0,
TRG int DEFAULT 0,
UNA int DEFAULT O,
UNK int DEFAULT O,
WXE int DEFAULT 0

)
CREATE TABLE #nResult2 (

Aircraft FK varchar(255),

CRW int DEFAULT O,
ENV int DEFAULT O,
EQP int DEFAULT 0,
ERR int DEFAULT O,
MED int DEFAULT 0,
ORG int DEFAULT O,
RDY int DEFAULT 0O,
SUP int DEFAULT 0,
UNK int DEFAULT 0,
VIO int DEFAULT 0,
WRK' int DEFAULT 0

)
CREATE TABLE #nResultl (

Aircraft_FK varchar(255),

MA int DEFAULT O,
MC int DEFAULT 0,
MG int DEFAULTOQ,
UN int DEFAULT 0,
WC int DEFAULT O

387

)
CREATE TABLE #nResultFinal (

Aircraft_FK varchar(255),
ADA int DEFAULT O,
ASS int DEFAULTO,
ATT int DEFAULT O,
COM int DEFAULT O,
CON int DEFAULT O,
CRT int DEFAULT 0,
DES int DEFAULT 0,
DMG int DEFAULT O,
DOC int DEFAULT O,
DUC int DEFAULT 0,
EHZ int DEFAULT 0,
EXC int DEFAULT 0,
FLG int DEFAULT O,
IDQ int DEFAULT O,
IFC int DEFAULT 0,
INA int DEFAULT O,
INF int DEFAULT O,
JDG int DEFAULT O,
KNW int DEFAULT O,
LIM int DEFAULT O,
LGT int DEFAULT 0,
MIS int DEFAULT 0,
MNT int DEFAULT O,
OBS int DEFAULT 0,
OPS int DEFAULT 0O,
PHY int DEFAULTO,
PRB int DEFAULT 0,
PRO int DEFAULT 0,
RES int DEFAULT 0,
ROU int DEFAULT O,
SKL int DEFAULT O,
TRG int DEFAULT O,
UNA int DEFAULT 0,
WXE int DEFAULT 0,
CRW int DEFAULT O,
WRK int DEFAULT 0,
ENV int DEFAULT O,
EQP int DEFAULT 0,
ERR int DEFAULT 0,
MED int DEFAULT O,
ORG int DEFAULT 0,
RDY int DEFAULT O,
SUP int DEFAULT 0,
VIO int DEFAULT 0,
MA int DEFAULT 0,
MC int DEFAULT 0,
MG int DEFAULT 0,
WC int DEFAULT O

FOR THIRD LEVEL FACTORS

--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [3rdLevelCode], Aircraft_ FK INTO

#nTemp3

FROM [vwFlanReports 2-2-Aircraft3]

UPDATE #nTemp3
SET Aircraft FK ='Nonée

WHERE Aircraft_FK isnull

--Now run the crosstab

INSERT #nResult3

EXEC dbo.rac @grpcol="Aircraft_FK",
@pvtcol="[3rdLevel Code]', @transform="count(*)', @from
="#inTemp3', @where=",

@printagg="n',@grand_totals='n’,
@row_totals='n', @emptycell="0'

FOR SECOND LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [2ndLevelCode], Aircraft FK INTO
#nTemp2

FROM [vwFlanReports 2-2-Aircraft2]

UPDATE #nTemp2
SET Aircraft_ FK ='None'
WHERE Aircraft_FK isnull
--Now run the crosstab

INSERT #nResult2

EXEC dbo.rac @grpcol="Aircraft_FK',
@pvtcol="[2ndLevel Code]', @transform="count(*)', @from
=#nTemp2', @where=",

@printagg="n',@grand_totals='n',

@row_totas='n', @emptycell="0'

FOR FIRST LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplID, [1stLevelCode], Aircraft FK INTO
#nTempl

FROM [vwFlanReports 2-2-Aircraft]

UPDATE #nTempl
SET Aircraft_ FK ='Nonée
WHERE Aircraft_FK isnull
--Now run the crosstab

INSERT #nResult1

EXEC dbo.rac @grpcol="Aircraft_FK',
@pvtcol=1stLevelCode]', @transform="count(*)', @from
='#nTempl, @where=",

@printagg="n',@grand_totals='n’,

@row_totas='n', @emptycell="0'

INSERT #nResultFinal
SELECT dbo#nResult3.Aircraft FK,

dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3. ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,

dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.1DQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,

dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.0BS,

dbo.#nResult3.0PS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,

dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2 WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

388

dbo.#nResult2.MED,
dbo.#nResult2.0RG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.VI10, dbo#nResultl.MA,
dbo.#nResult1.MC,
dbo.#nResultl.MG,
dbo.#nResultl.WC
FROM dbo.#nResult3 INNER JOIN
dbo.#nResult2 ON dbo.#nResult3. Aircraft_ FK
= dbo.#nResult2. Aircraft FK INNER JOIN
dbo.#nResultl ON dbo.#nResult3. Aircraft_ FK
= dbo.#nResultl.Aircraft FK

SELECT thiMishaps.Aircraft_FK,
Count(tblMishaps.MishaplD) AS TotalMishaps INTO
#nResultTotal

FROM dbo.tbiMishaps

GROUPBY tbIMishaps.Aircraft FK

SELECT dbo.#nResultFind .Aircraft_FK,
dbo.#nResultFina . ADA, dbo.#nResultFina.ASS,
dbo.#nResultFind . ATT, dbo.#nResultFina .COM,
dbo.#nResultFind .CON, dbo.#nResultFina .CRT,
dbo.#nResultFinal.DES,

dbo.#nResultFina .DMG,
dbo.#nResultFina.DOC, dbo.#nResultFina.DUC,
dbo.#nResultFina.EHZ, dbo.#nResultFinal .EXC,
dbo.#nResultFinal .FLG, dbo.#nResultFina.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal .INF,

dbo.#nResultFinal.JDG,
dbo.#nResultFina .KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFina .LGT, dbo.#nResultFina.MIS,
dbo.#nResultFina .MNT, dbo.#nResultFinal.OBS,

dbo.#nResultFinal.OPS,
dbo.#nResultFinal .PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal .PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo#nResultFinal.SKL,

dbo.#nResultFinal . TRG,
dbo.#nResultFinal .UNA, dbo.#nResultFina WXE,
dbo.#nResultFina .CRW, dbo.#nResultFina . WRK,
dbo.#nResultFina .ENV, dbo.#nResultFinal .EQP,
dbo.#nResultFina .ERR,

dbo.#nResultFina .MED,
dbo.#nResultFina .ORG, dbo.#nResultFina.RDY,
dbo.#nResultFina .SUP, dbo.#nResultFina.V10,
dbo.#nResultFina.MA, dbo.#nResultFina.MC,

dbo.#nResultFina.MG,
dbo.#nResultFinal.WC,

dbo.#nResultTotal. TotalMishaps

FROM dbo.#nResultFinal INNER JOIN

dbo.#nResultTotal ON
dbl #nResultFinal .Aircraft_FK=dbo.#nResultTotal . Aircraft
FK

DROP TABLE #nResultFinal
DROP TABLE #nResultTotal
DROP TABLE #nResult3
DROP TABLE #nResult2
DROP TABLE #nResultl

return

8-0-0-2-NelsonReportByL ocation

Alter Procedure[8-0-0-2-NelsonReportByL ocation]

)
CREATE TABLE #nResultFinal (

As
LocationID_FK varchar(255),
SET NOCOUNT ON ADA int DEFAULT 0,
ASS int DEFAULT 0,
CREATE TABLE #nResult3 (ATT int DEFAULT 0,
LocationID_FK varchar(255), COM int DEFAULT O,
ADA int DEFAULT 0, CON int DEFAULT 0,
ASS int DEFAULT O, CRT int DEFAULT O,
ATT int DEFAULT 0, DES int DEFAULT 0,
COM int DEFAULT 0, DMG int DEFAULT 0,
CON int DEFAULT 0, DOC int DEFAULT O,
CRT int DEFAULT O, DUC int DEFAULT 0,
DES int DEFAULT 0, EHZ int DEFAULT 0,
DMG int DEFAULT 0, EXC int DEFAULT 0,
DOC int DEFAULT O, FLG int DEFAULT O,
DUCint DEFAULT O, IDQ int DEFAULT 0,
EHZ int DEFAULT 0, IFC int DEFAULT 0,
EXCint DEFAULT O, INA int DEFAULT O,
FLG int DEFAULT O, INF int DEFAULT O,
IDQ int DEFAULT 0, JDG int DEFAULT 0,
IFC int DEFAULT O, KNW int DEFAULT 0,
INA int DEFAULT 0, LIM int DEFAULT O,
INF int DEFAULT O, LGT int DEFAULT O,
JDG int DEFAULT 0, MIS int DEFAULT 0,
KNW int DEFAULT 0, MNT int DEFAULT 0,
LGT int DEFAULT O, OBS int DEFAULT O,
LIM int DEFAULT O, OPS int DEFAULT 0,
MIS int DEFAULT 0, PHY int DEFAULT O,
MNT int DEFAULT 0, PRB int DEFAULT O,
OBS int DEFAULT 0, PRO int DEFAULT 0,
OPS int DEFAULT 0, RES int DEFAULT O,
PHY int DEFAULT O, ROU int DEFAULT O,
PRB int DEFAULT O, SKL int DEFAULT 0,
PRO int DEFAULT 0, TRG int DEFAULT O,
RES int DEFAULT O, UNA int DEFAULT O,
ROU int DEFAULT 0, WXE int DEFAULT 0,
SKL int DEFAULT O, CRW int DEFAULT O,
TRG int DEFAULT 0, WRK int DEFAULT O,
UNA int DEFAULT O, ENV int DEFAULT O,
UNK int DEFAULT O, EQP int DEFAULT 0,
WXE int DEFAULT 0 ERR int DEFAULT O,
) MED int DEFAULT 0,
CREATE TABLE #nResult2 (ORG int DEFAULT O,
LocationlD_FK varchar(255), RDY int DEFAULT O,
CRW int DEFAULT O, SUP int DEFAULTO,
ENV int DEFAULT O, VIO int DEFAULT 0,
EQP int DEFAULT 0, MA int DEFAULT 0,
ERR int DEFAULT O, MC int DEFAULT 0,
MED int DEFAULT O, MG int DEFAULT 0,
ORG int DEFAULT O, WC int DEFAULT 0
RDY int DEFAULT 0,)
SUP int DEFAULT 0,
UNK int DEFAULT 0, FOR THIRD LEVEL FACTORS
VIO int DEFAULT 0, --Build atemp table and update the null valuesto 'None"
WRK ' int DEFAULT 0 SELECT MishaplD, [3rdLevelCode], LocationID_FK INTO
) #nTemp3
CREATE TABLE #nResult1 (FROM [vwFlanReports2-3-L ocation3]

LocationlD_FK varchar(255),

MA int DEFAULT O, UPDATE#nTemp3

MC int DEFAULT 0,
MG int DEFAULTOQ,
UN int DEFAULT 0,
WC int DEFAULT O

389

SET LocationID_FK ='None'

WHERE LocationID_FK isnull

--Now run the crosstab
INSERT #nResult3

EXEC dbo.rac @grpcol='LocationID_FK',
@pvtcol="3rdLevel Code]', @transform="count(*)', @from
="#inTemp3', @where=",

@printagg="n',@grand_totals='n',
@row_totals='n', @emptycell="0'

FOR SECOND LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [2ndLevel Code], LocationlD_FK
INTO#nTemp2

FROM [vwFlanReports 2-3-L ocation2]

UPDATE #nTemp2
SET LocationID_FK ='None'
WHERE LocationID_FK isnull
--Now run the crosstab

INSERT #nResult2

EXEC dbo.rac @grpcol="LocationID_FK',
@pvtcol="[2ndLevel Code]', @transform="count(*)', @from
="#inTemp2', @where=",

@printagg="n",@grand_totals='n',

@row_totals="n', @emptycel|="0'

FOR FIRST LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [1stLevelCode], LocationID_FK INTO
#nTempl

FROM [vwFlanReports 2-3-L ocation1]

UPDATE #nTempl
SET LocationID_FK ='None'
WHERE LocationID_FK isnull
--Now run the crosstab

INSERT #nResult1

EXEC dbo.rac @grpcol="LocationID_FK",
@pvtcol=1stLevelCode]', @transform="count(*)', @from
='#nTempl', @where=",

@printagg="n',@grand_totals='n’,

@row_totals='n', @emptycell="0"

INSERT #nResultFinal
SELECT dbo.#nResult3.LocationID_FK,

dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3. ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo#nResult3.CRT,
dbo.#nResult3.DES,

dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.1DQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,

dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.0BS,

dbo.#nResult3.0PS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,

dbo.#nResult3TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2 WRK,,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

dbo.#nResult2. MED,
dbo.#nResult2.ORG, dbo.#nResult2.RDY,

390

dbo.#nResult2.SUP, dbo.#nResult2.V10, dbo.#nResultl.MA,
dbo.#nResultl.MC,
dbo.#nResultl.MG,
dbo.#nResultl.WC
FROM dbo.#nResult3 INNER JOIN

dbo#nResult2 ON
dbo.#nResult3.LocationID_FK =
dbo.#nResult2.LocationlD_FK INNER JOIN

dbo#nResultl ON
dbo.#nResult3.LocationID_FK =
dbo.#nResultl.Locationl D_FK

SELECT thIMishaps.LocationID_FK,
Count(tblMishaps.MishaplD) AS TotalMishaps INTO
#nResultTotal

FROM dbo.tbiMishaps

GROUPBY thIMishaps.LocationID_FK

SELECT dbo.#nResultFinal.LocationID_FK,
dbo.#nResultFinal . ADA, dbo.#nResultFina . ASS,
dbo.#nResultFind . ATT, dbo.#nResultFina .COM,
dbo.#nResultFind .CON, dbo.#nResultFina .CRT,
dbo.#nResultFinal.DES,

dbo.#nResultFina .DMG,
dbo.#nResultFina .DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFina .EHZ, dbo.#nResultFina .EXC,
dbo.#nResultFinal .FLG, dbo.#nResultFina.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal .INF,

dbo.#nResultFinal.JDG,
dbo.#nResultFina . KNW, dbo.#nResultFinal .LIM,
dbo.#nResultFina .LGT, dbo.#nResultFina.MIS,
dbo.#nResultFina . MNT, dbo.#nResultFinal .OBS,

dbo.#nResultFinal.OPS,
dbo.#nResultFinal .PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal .PRO, dbo.#nResultFinal.RES,
dbo.#nResultFina.ROU, dbo.#nResultFinal.SKL,

dbo.#nResultFinal . TRG,
dbo.#nResultFinal.UNA, dbo.#nResultFinal . WXE,
dbo.#nResultFina .CRW, dbo.#nResultFina . WRK,
dbo.#nResultFina .ENV, dbo.#nResultFinal .EQP,
dbo.#nResultFina .ERR,

dbo.#nResultFina .MED,
dbo.#nResultFina .ORG, dbo.#nResultFind .RDY,
dbo.#nResultFina .SUP, dbo.#nResultFina.V10,
dbo.#nResultFina .MA, dbo.#nResultFinad.MC,

dbo.#nResultFina.MG,
dbo.#nResultFina . WC, dbo.#nResultTotal. TotalMishaps,
dbo.thlMishapL ocation.MishapL ocation

FROM dbo.#nResultFina INNER JOIN
dbo.#nResultTotal ON
dbo.#nResultFinal.LocationID_FK =
dbo.#nResultTatal .LocationlD_FK INNER JOIN
dbo.tbIMishapL ocation ON
dbo.#nResultFinal .LocationIlD_FK =
dbo.thlMishapL ocation.MishapL ocationl D

DROP TABLE #nResultFinal
DROP TABLE #nResultTotal
DROP TABLE #nResult3
DROP TABLE #nResult2

DROP TABLE #nResultl

return

391

8-0-0-3-NelsonReportByClass

Alter Procedure[8-0-0-3-NelsonReportByClass]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (

Class FK varchar(255),
ADA int DEFAULT 0,
ASS int DEFAULT O,
ATT int DEFAULT 0,
COM int DEFAULT 0,
CON int DEFAULT 0,
CRT int DEFAULT O,
DES int DEFAULT 0,
DMG int DEFAULT 0,
DOC int DEFAULT O,
DUCint DEFAULT O,
EHZ int DEFAULT 0,
EXCint DEFAULT O,
FLG int DEFAULT O,
IDQ int DEFAULT 0,
IFC int DEFAULT O,
INA int DEFAULT 0,
INF int DEFAULT O,
JDG int DEFAULT 0,
KNW int DEFAULT 0,
LGT int DEFAULT O,
LIM int DEFAULT O,
MIS int DEFAULT 0,
MNT int DEFAULT 0,
OBS int DEFAULT 0,
OPS int DEFAULT 0,
PHY int DEFAULT O,
PRB int DEFAULT O,
PRO int DEFAULTO,
RES int DEFAULT O,
ROU int DEFAULT 0,
SKL int DEFAULT 0,
TRG int DEFAULT 0,
UNA int DEFAULT O,
UNK int DEFAULT O,
WXE int DEFAULT 0

)
CREATE TABLE #nResult2 (

Class FK varchar(255),
CRW int DEFAULT O,
ENV int DEFAULT O,
EQP int DEFAULT O,
ERR int DEFAULT O,
MED int DEFAULT O,
ORG int DEFAULT O,
RDY int DEFAULT 0,
SUP int DEFAULT 0,
UNK int DEFAULT 0,
VIO int DEFAULT 0,
WRK ' int DEFAULT 0

)
CREATE TABLE #nResultl (

Class FK varchar(255),
MA int DEFAULT O,
MC int DEFAULT O,
MG int DEFAULT O,
UN int DEFAULT DO,
WC int DEFAULT 0

392

)
CREATE TABLE #nResultFinal (

Class FK varchar(255),
ADA int DEFAULT O,
ASS int DEFAULT 0,
ATT int DEFAULT O,
COM int DEFAULT O,
CON int DEFAULT O,
CRT int DEFAULT 0,
DES int DEFAULT 0,
DMG int DEFAULT O,
DOC int DEFAULT O,
DUC int DEFAULT 0,
EHZ int DEFAULT 0,
EXC int DEFAULT 0,
FLG int DEFAULT O,
IDQ int DEFAULT 0,
IFC int DEFAULT 0,
INA int DEFAULT O,
INF int DEFAULT O,
JDG int DEFAULT O,
KNW int DEFAULT O,
LIM int DEFAULT O,
LGT int DEFAULT 0,
MIS int DEFAULT 0,
MNT int DEFAULT O,
OBS int DEFAULT 0,
OPS int DEFAULT 0O,
PHY int DEFAULT O,
PRB int DEFAULT 0,
PRO int DEFAULT 0,
RES int DEFAULT O,
ROU int DEFAULT O,
SKL int DEFAULT O,
TRG int DEFAULT O,
UNA int DEFAULT 0,
WXE int DEFAULT 0,
CRW int DEFAULT O,
WRK int DEFAULT 0,
ENV int DEFAULT O,
EQP int DEFAULT 0,
ERR int DEFAULT 0,
MED int DEFAULT O,
ORG int DEFAULT 0,
RDY int DEFAULT O,
SUP int DEFAULT 0,
VIO int DEFAULT 0,
MA int DEFAULT 0,
MC int DEFAULT 0,
MG int DEFAULT 0,
WC int DEFAULT O

FOR THIRD LEVEL FACTORS

--Build atemp table and update the null valuesto 'None"
SELECT MishapID, [3rdLevelCode], Class FK INTO

#nTemp3

FROM [vwFlanReports 2-4-Class3]

UPDATE#nTemp3

SET Class FK ='None
WHERE Class FK isnull
--Now run the crosstab

INSERT #nResult3

EXEC dbo.rac @grpcol='Class FK',
@pvtcol="[3rdLevel Code]', @transform="count(*)', @from
=#nTemp3', @where=",

@printagg="n',@grand_totals='n',
@row_totals='n', @emptycell="0'

FOR SECOND LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [2ndLevelCode], Class FK INTO
#nTemp2

FROM [vwFlanReports 2-4-Class2]

UPDATE #nTemp2
SET Class FK ='None'
WHERE Class FK isnull
--Now run the crosstab

INSERT #nResult2

EXEC dbo.rac @grpcol='Class FK',
@pvtcol="[2ndLevel Code]', @transform="count(*)', @from
=#nTemp2', @where=",

@printagg="n",@grand_totals='n',

@row_totas='n', @emptycell="0'

FOR FIRST LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [1stLevelCode], Class FK INTO
#nTempl

FROM [vwFlanReports 2-4-Classl]

UPDATE #nTempl
SET Class FK ='None
WHERE Class FK isnull
--Now run the crosstab

INSERT #nResult1

EXEC dbo.rac @grpcol='Class FK',
@pvtcol=1stLevelCode]', @transform="count(*)', @from
='#nTempl', @where=",

@printagg="n',@grand_totals='n’,

@row_totas='n', @emptycell="0'

INSERT #nResultFinal
SELECT dbo.#nResult3.Class FK,

dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3. ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,

dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.1DQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,

dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LI M,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.0BS,

dbo.#nResult3.0PS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,

dbo.#nNResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2 WRK,,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

393

dbo.#nResult2.MED,
dbo.#nResult2.0RG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.VI10, dbo#nResultl.MA,
dbo.#nResult1.MC,
dbo.#nResultl.MG,
dbo.#nResult1.WC
FROM dbo.#nResult3 INNER JOIN
dbo.#nResult2 ON dbo#nResult3.Class FK =
dbo.#nResult2.Class FK INNER JOIN
dbo.#nResultl ON dbo#nResult3.Class FK =
dbo.#nResultl.Class FK

SELECT thiMishaps.Class FK,
Count(tblMishaps.MishaplD) AS TotalMishaps INTO
#nResultTotal

FROM dbo.tbiMishaps

GROUPBY thlMishaps.Class FK

SELECT dbo.#nResultFinal.Class FK,
dbo.#nResultFina . ADA, dbo.#nResultFina.ASS,
dbo.#nResultFina ATT, dbo.#nResultFina.COM,
dbo.#nResultFind .CON, dbo.#nResultFina .CRT,
dbo.#nResultFinal.DES,

dbo.#nResultFina .DMG,
dbo.#nResultFina .DOC, dbo.#nResultFinal.DUC,
dbo.#nResultFina.EHZ, dbo.#nResultFinal .EXC,
dbo.#nResultFinal .FLG, dbo.#nResultFina.IDQ,
dbo.#nResultFinal .IFC, dbo.#nResultFinal .INA,
dbo.#nResultFinal .INF,

dbo.#nResultFinal.JDG,
dbo.#nResultFina . KNW, dbo.#nResultFinal .LIM,
dbo.#nResultFina .LGT, dbo.#nResultFina.MIS,
dbo.#nResultFina .MNT, dbo.#nResultFinal.OBS,

dbo.#nResultFinal.OPS,
dbo.#nResultFinal.PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal .PRO, dbo.#nResultFinal.RES,
dbo.#nResultFina.ROU, dbo.#nResultFinal .SKL,

dbo.#nResultFinal . TRG,
dbo.#nResultFinal .UNA, dbo.#nResultFina WXE,
dbo.#nResultFina .CRW, dbo.#nResultFina . WRK,
dbo.#nResultFinal.ENV, dbo.#nResultFina .EQP,
dbo.#nResultFina .ERR,

dbo.#nResultFina .MED,
dbo.#nResultFina .ORG, dbo.#nResultFind .RDY,
dbo.#nResultFina .SUP, dbo.#nResultFina.V10,
dbo.#nResultFina.MA, dbo.#nResultFina.MC,

dbo.#nResultFina.MG,
dbo .#nResultFinal.WC,

dbo.#nResultTotal. TotalMishaps

FROM dbo.#nResultFinal INNER JOIN

dbo.#nResultTota ON

dbl #nResultFinal.Class FK=dbo.#nResultTotd.Class FK

DROP TABLE #nResultFinal
DROP TABLE #nResultTotal
DROP TABLE #nResult3
DROPTABLE #nResult2
DROP TABLE #nResultl

return

8-0-0-4-NelsonReportByOrganziation

Alter Procedure[8-0-0-4-NelsonReportByOrganization]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (

OrglD_FK varchar(255),
ADA int DEFAULT 0,
ASS int DEFAULT O,
ATT int DEFAULT 0,
COM int DEFAULT 0,
CON int DEFAULT 0,
CRT int DEFAULT O,
DES int DEFAULT 0,
DMG int DEFAULT 0,
DOC int DEFAULT O,
DUCint DEFAULT O,
EHZ int DEFAULT 0,
EXCint DEFAULT O,
FLG int DEFAULT O,
IDQ int DEFAULT 0,
IFC int DEFAULT O,
INA int DEFAULT 0,
INF int DEFAULT O,
JDG int DEFAULT 0,
KNW int DEFAULT 0,
LGT int DEFAULT O,
LIM int DEFAULT O,
MIS int DEFAULT 0,
MNT int DEFAULT 0,
OBS int DEFAULT 0,
OPS int DEFAULT 0,
PHY int DEFAULT O,
PRB int DEFAULT O,
PRO int DEFAULT 0,
RES int DEFAULT O,
ROU int DEFAULT 0,
SKL int DEFAULT 0,
TRG int DEFAULT 0,
UNA int DEFAULT O,
UNK int DEFAULT O,
WXE int DEFAULT 0

)
CREATE TABLE #nResult2 (

OrglD_FK varchar(255),
CRW int DEFAULT O,
ENV int DEFAULT O,
EQP int DEFAULT 0,
ERR int DEFAULT O,
MED int DEFAULT O,
ORG int DEFAULT O,
RDY int DEFAULT 0,
SUP int DEFAULT 0,
UNK int DEFAULT 0,
VIO int DEFAULT 0,
WRK ' int DEFAULT 0

)
CREATE TABLE #nResultl (

OrgID_FK varchar(255),
MA int DEFAULT O,
MC int DEFAULT 0,
MG int DEFAULT O,
UN int DEFAULT O,
WC int DEFAULT 0

394

)
CREATE TABLE #nResultFinal (

OrglD_FK varchar(255),
ADA int DEFAULT O,
ASS int DEFAULT 0,
ATT int DEFAULT O,
COM int DEFAULT O,
CON int DEFAULT O,
CRT int DEFAULT 0,
DES int DEFAULT 0,
DMG int DEFAULT O,
DOC int DEFAULT O,
DUC int DEFAULT 0,
EHZ int DEFAULT 0,
EXC int DEFAULT 0,
FLG int DEFAULT O,
IDQ int DEFAULT O,
IFC int DEFAULT 0,
INA int DEFAULT O,
INF int DEFAULT O,
JDG int DEFAULT O,
KNW int DEFAULT O,
LIM int DEFAULT O,
LGT int DEFAULT 0,
MIS int DEFAULT 0,
MNT int DEFAULT O,
OBS int DEFAULT 0,
OPS int DEFAULT 0O,
PHY int DEFAULTO,
PRB int DEFAULT 0,
PRO int DEFAULT 0,
RES int DEFAULT 0,
ROU int DEFAULT O,
SKL int DEFAULT O,
TRG int DEFAULT O,
UNA int DEFAULT 0,
WXE int DEFAULT 0,
CRW int DEFAULT O,
WRK int DEFAULT 0,
ENV int DEFAULT O,
EQP int DEFAULT O,
ERR int DEFAULT 0,
MED int DEFAULT O,
ORG int DEFAULT 0,
RDY int DEFAULT O,
SUP int DEFAULT 0,
VIO int DEFAULT 0,
MA int DEFAULT 0,
MC int DEFAULT 0,
MG int DEFAULT 0,
WC int DEFAULT O

FOR THIRD LEVEL FACTORS

--Build atemp table and update the null valuesto 'None"

SELECT MishaplD, [3rdLevelCode], OrglD_FK

#nTemp3

FROM [vwFlanReports 2-5-Organization3]

UPDATE #nTemp3

SET OrgID_FK ='Non¢e'
WHERE OrgID_FK isnull
--Now run the crosstab

INSERT #nResult3

INTO

EXEC dbo.rac @grpcol="OrgID_FK ',
@pvtcol="[3rdLevel Code]', @transform="count(*)', @from
="#inTemp3', @where=",

@printagg="n',@grand_totals='n',
@row_totals='n', @emptycell="0'

FOR SECOND LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishapID, [2ndLevelCode], OrgiD_FK INTO
#nTemp2

FROM [vwFlanReports 2-5-Organization?2]

UPDATE #nTemp2
SET OrgID_FK ='None'
WHERE OrgID_FK isnull
--Now run the crosstab

INSERT #nResult2

EXEC dbo.rac @grpcol="OrgID_FK ',
@pvtcol="[2ndLevel Code]', @transform="count(*)', @from
="#inTemp2', @where=",

@printagg="n',@grand_totals='n',

@row_totals="n', @emptycel|="0'

FOR FIRST LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [1stLevelCode], OrgID_FK INTO
#nTempl

FROM [vwFl anReports 2-5-Organization1]

UPDATE #nTempl
SET OrgID_FK ='None'
WHERE OrgID_FK isnull
--Now run the crosstab

INSERT #nResult1

EXEC dbo.rac @grpcol="OrgID_FK ',
@pvtcol=1stLevelCode]', @transform="count(*)', @from
=#nTempl', @where=",

@printagg="n',@grand_totals='n’,

@row_totals="n', @emptycel|="0'

INSERT #nResultFinal
SELECT dbo.#nResult3.0rgID_FK

dbo.#nResult3. ADA, dbo.#nResult3.ASS,
dbo.#nResult3. ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,

dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.1DQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,

dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.0BS,

dbo.#nResult3.0PS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,

dbo.#nNResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2 WRK,,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

395

dbo.#nResult2.MED,
dbo.#nResult2.0RG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.V10, dbo.#nResultl.MA,
dbo.#nResult1.MC,
dbo.#nResultl. MG,
dbo.#nResultl.WC
FROM dbo.#nResult3 INNER JOIN
dbo.#nResult2 ON dbo.#nResult3.0rgID_FK
= dbo.#nResult2.0rgID_FK INNER JOIN
dbo.#nResultl ON dbo.#nResult3.0rgID_FK
= dbo.#nResult1.OrgID_FK

SELECT thIMishaps.OrgID_FK ,
Count(tblMishaps.MishaplD) AS TotalMishaps INTO
#nResultTotal

FROM dbo.tbiMishaps

GROUPBY thlMishaps.OrglD_FK

SELECT dbo.#nResultFinal.OrgID_FK
dbo.#nResultFina . ADA, dbo.#nResultFina.ASS,
dbo.#nResultFind . ATT, dbo.#nResultFina .COM,
dbo.#nResultFind .CON, dbo.#nResultFina .CRT,
dbo.#nResultFinal.DES,

dbo.#nResultFina .DMG,
dbo.#nResultFina.DOC, dbo.#nResultFina.DUC,
dbo.#nResultFina.EHZ, dbo.#nResultFinal .EXC,
dbo.#nResultFinal .FLG, dbo.#nResultFina.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal .INF,

dbo.#nResultFinal.JDG,
dbo.#nResultFina . KNW, dbo.#nResultFinal.LIM,
dbo.#nResultFina .LGT, dbo.#nResultFina.MIS,
dbo.#nResultFina .MNT, dbo.#nResultFinal.OBS,

dbo.#nResultFinal.OPS,
dbo.#nResultFinal .PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal .PRO, dbo.#nResultFinal.RES,
dbo.#nResultFinal.ROU, dbo.#nResultFinal .SK L,

dbo.#nResultFinal . TRG,
dbo.#nResultFinal .UNA, dbo.#nResultFina WXE,
dbo.#nResultFina .CRW, dbo.#nResultFina . WRK,
dbo.#nResultFina .ENV, dbo.#nResultFinal .EQP,
dbo.#nResultFina .ERR,

dbo.#nResultFina .MED,
dbo.#nResultFinal.ORG, dbo.#nResultFina.RDY,
dbo.#nResultFina .SUP, dbo.#nResultFina.V10,
dbo.#nResultFina.MA, dbo.#nResultFina.MC,

dbo.#nResultFina.MG,
dbo.#nResultFinal.WC,

dbo.#nResultTotal. TotalMishaps

FROM dbo.#nResultFinal INNER JOIN

dbo.#nResultTota ON
dbl #nResult Final.OrglD_FK
=dbo.#nResultTota.OrglD_FK

DROP TABLE #nResultFinal
DROP TABLE #nResultTotal
DROP TABLE #nResult3
DROP TABLE #nResult2
DROP TABLE #nResultl

return

8-0-0-5-NelsonReportByType

Alter Procedure[8-0-0-5-NelsonReportBy Type]
As
SET NOCOUNT ON

CREATE TABLE #nResult3 (
Type FK varchar(255),
ADA int DEFAULT 0,
ASS int DEFAULT O,
ATT int DEFAULT 0,
COM int DEFAULT 0,
CON int DEFAULT 0,
CRT int DEFAULT O,
DES int DEFAULT 0,
DMG int DEFAULT 0,
DOC int DEFAULTO,
DUCint DEFAULT O,
EHZ int DEFAULT 0,
EXCint DEFAULT O,
FLG int DEFAULT O,
IDQ int DEFAULT 0,
IFC int DEFAULT O,
INA int DEFAULT 0,
INF int DEFAULT O,
JDG int DEFAULT 0,
KNW int DEFAULT 0,
LGT int DEFAULT O,
LIM int DEFAULT O,
MIS int DEFAULT 0,
MNT int DEFAULT 0,
OBS int DEFAULT 0,
OPS int DEFAULT 0,
PHY int DEFAULT O,
PRB int DEFAULT O,
PRO int DEFAULT 0,
RES int DEFAULT O,
ROU int DEFAULT 0,
SKL int DEFAULT 0,
TRG int DEFAULT 0,
UNA int DEFAULT O,
UNK int DEFAULT O,
WXE int DEFAULT 0

)

CREATE TABLE #nResult2 (
Type FK varchar(255),
CRW int DEFAULT O,
ENV int DEFAULT O,
EQP int DEFAULT 0,
ERR int DEFAULT O,
MED int DEFAULT O,
ORG int DEFAULT O,
RDY int DEFAULTO,
SUP int DEFAULT 0,
UNK int DEFAULT 0,
VIO int DEFAULT 0,
WRK ' int DEFAULT 0

)

CREATE TABLE #nResult1 (
Type FK varchar(255),
MA int DEFAULT O,
MC int DEFAULT 0,
MG int DEFAULT O,
UN int DEFAULT O,
WC int DEFAULT 0

396

)
CREATE TABLE #nResultFinal (

Type FK varchar(255),
ADA int DEFAULT O,
ASS int DEFAULT 0,
ATT int DEFAULT O,
COM int DEFAULT O,
CON int DEFAULT O,
CRT int DEFAULT 0,
DES int DEFAULT 0,
DMG int DEFAULT O,
DOC int DEFAULT O,
DUC int DEFAULT 0,
EHZ int DEFAULT 0,
EXC int DEFAULT 0,
FLG int DEFAULT O,
IDQ int DEFAULT 0,
IFC int DEFAULT 0,
INA int DEFAULT O,
INF int DEFAULT O,
JDG int DEFAULT O,
KNW int DEFAULT O,
LIM int DEFAULT O,
LGT int DEFAULT O,
MIS int DEFAULT 0,
MNT int DEFAULT O,
OBS int DEFAULT 0,
OPS int DEFAULT 0O,
PHY int DEFAULT O,
PRB int DEFAULT 0,
PRO int DEFAULT 0,
RES int DEFAULT 0,
ROU int DEFAULT O,
SKL int DEFAULT O,
TRG int DEFAULT O,
UNA int DEFAULT O,
WXE int DEFAULT 0,
CRW int DEFAULT O,
WRK int DEFAULT 0,
ENV int DEFAULT O,
EQP int DEFAULT 0,
ERR int DEFAULT 0,
MED int DEFAULT O,
ORG int DEFAULT 0,
RDY int DEFAULT O,
SUP int DEFAULT 0,
VIO int DEFAULT 0,
MA int DEFAULT 0,
MC int DEFAULT 0,
MG int DEFAULT 0,
WC int DEFAULT O

FOR THIRD LEVEL FACTORS

--Build atemp table and update the null valuesto 'None"

SELECT MishaplD, [3rdLevelCode], Type FK

#nTemp3

FROM [vwFlanReports 2-6-Type3]

UPDATE #nTemp3

SET Type FK ='None
WHERE Type FK isnull
--Now run the crosstab

INSERT #nResult3

INTO

EXEC dbo.rac @grpcol="Type FK ',
@pvtcol="[3rdLevelCode]', @transform="count(*)', @from
=#nTemp3', @where=",

@printagg="n',@grand_totals='n',
@row_totals='n', @emptycell="0'

FOR SECOND LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [2ndLevelCode], Type FK INTO
#nTemp2

FROM [vwFlanReports 2-6-Type2]

UPDATE #nTemp2
SET Type FK ='None
WHERE Type FK isnull
--Now run the crosstab

INSERT #nResult2

EXEC dbo.rac @grpcol="Type FK ',
@pvtcol="[2ndLevelCode]', @transform="count(*)', @from
=#nTemp2', @where=",

@printagg="n",@grand_totals='n',

@row_totas='n', @emptycell="0'

FOR FIRST LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplID, [1stLevelCode], Type FK INTO
#nTempl

FROM [vwFlanReports 2-6-Typel]

UPDATE #nTempl
SET Type FK ='None
WHERE Type FK isnull
--Now run the crosstab

INSERT #nResult1

EXEC dbo.rac @grpcol="Type FK ',
@pvtcol="T1stLevelCode]', @transform="count(*)', @from
='#nTempl', @where=",

@printagg="n',@grand_totals='n’,

@row_totas='n', @emptycell="0'

INSERT #nResult Final
SELECT dbo.#nResult3.Type FK ,

dbo.#nResult3 ADA, dbo.#nResult3.ASS,
dbo.#nResult3.ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,

dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FL G, dbo.#nResult3.1DQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,

dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.LIM,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.0BS,

dbo.#nResult3.0PS,
dbo.#nResult3.PHY , dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,

dbo.#nResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3WXE,
dbo.#nResult2.CRW, dbo.#nResult2.WRK,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

dbo.#nResult2.MED,
dbo.#nResult2.0RG, dbo.#nResult2.RDY,

397

dbo.#nResult2.SUP, dbo.#nResult2.V10, dbo.#nResultl.MA,
dbo.#nResult1.MC,
dbo.#nResultl. MG,
dbo.#nResult1.WC
FROM dbo.#nResult3 INNER JOIN

dbo#nResult2 ON dbo#nResult3 Type FK =
dbo#nResult2.Type FK INNER JOIN

dbo#nResultl ON dbo#nResult3. Type FK =
dbo.#nResult1.Type FK

SELECT thlMishaps. Type FK ,
Count(tblMishaps.MishaplD) AS TotalMishaps INTO
#nResultTotal

FROM dbo.tbiMishaps

GROUP BY thIMishaps. Type FK

SELECT dbo.#nResultFinal. Type FK ,
dbo.#nResultFina . ADA, dbo.#nResultFina .ASS,
dbo.#nResultFind . ATT, dbo.#nResultFina .COM,
dbo.#nResultFind .CON, dbo.#nResultFina .CRT,
dbo.#nResultFina .DES,

dbo.#nResultFina .DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFina.DUC,
dbo.#nResultFina.EHZ, dbo.#nResultFinal .EXC,
dbo.#nResultFinal .FLG, dbo.#nResultFina.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFinal.INA,
dbo.#nResultFinal.INF,

dbo.#nResultFind .JDG,
dbo.#nResultFina . KNW, dbo.#nResultFinal .LIM,
dbo.#nResultFina .LGT, dbo.#nResultFina.MIS,
dbo.#nResultFina .MNT, dbo.#nResultFinal .OBS,

dbo.#nResultFinal.OPS,
dbo.#nResultFina .PHY, dbo.#nResultFina .PRB,
dbo.#nResultFina .PRO, dbo.#nResultFinal.RES,
dbo.#nResultFina .ROU, dbo.#nResultFinal.SKL,

dbo.#nResultFinal . TRG,
dbo.#nResultFinal .UNA, dbo.#nResultFina . WXE,
dbo.#nResultFina .CRW, dbo.#nResultFina . WRK,
dbo.#nResultFina .ENV, dbo.#nResultFinal .EQP,
dbo.#nResultFina .ERR,

dbo.#nResultFina .MED,
dbo.#nResultFina .ORG, dbo.#nResultFina .RDY,
dbo.#nResultFina .SUP, dbo.#nResultFina V10O,
dbo.#nResultFina.MA, dbo.#nResultFina.MC,

dbo.#nResultFina .M G,
dbo.#nResultFinal . WC,

dbo.#nResultTotal. TotalMishaps,
dbo.thlM ishapType.MishapTypeDefinition

FROM dbo.#nResultFind INNER JOIN

dbo.#nResultTotal ON
dbl.#nResultFina . Type FK =dbo.#nResultTotal. Type FK
INNER JOIN

dbo.tbiMishapType ON
dbo.#nResultFinal. Type FK =
dbo.tblMishapType.MishapTypeCode

DROP TABLE #nResultFinal
DROP TABLE #nResultTotal
DROP TABLE #nResult3
DROP TABLE #nResult2
DROP TABLE #nResultl

return

8-0-0-6-NelsonReportByYear

Alter Procedure[8-0-0-6-NelsonReportByY ear]

As

SET NOCOUNT ON

CREATE TABLE #nResult3 (

Year int,

ADA int DEFAULTO,
ASS int DEFAULT 0,
ATT int DEFAULTOQ,
COM int DEFAULT O,
CON int DEFAULT O,
CRT int DEFAULT 0,
DES int DEFAULT O,
DMG int DEFAULT O,
DOC int DEFAULT 0,
DUCint DEFAULT 0,
EHZ int DEFAULT O,
EXCint DEFAULT DO,
FLG int DEFAULT O,
IDQ int DEFAULT 0,
IFC int DEFAULT 0,
INA int DEFAULT O,
INF int DEFAULT O,
JDG int DEFAULT O,
KNW int DEFAULT O,
LGT int DEFAULT O,
LIM int DEFAULT O,
MIS int DEFAULT O,
MNT int DEFAULT O,
OBS int DEFAULT 0,
OPS int DEFAULT 0O,
PHY int DEFAULT O,
PRB int DEFAULT 0,
PRO int DEFAULT 0O,
RES int DEFAULT 0,
ROU int DEFAULT O,
SKL int DEFAULT O,
TRG int DEFAULT O,
UNA int DEFAULTOQ,
UNK int DEFAULT 0,
WXE int DEFAULT 0

)
CREATE TABLE #nResult2 (

Year int,

CRW int DEFAULT O,
ENV int DEFAULT 0,
EQP int DEFAULT 0,

ERR int DEFAULT 0,
MED int DEFAULT 0,
ORG int DEFAULT 0,
RDY int DEFAULT O,
SUP int DEFAULT O,
UNK int DEFAULT O,

VIO int DEFAULT 0,

WRK int DEFAULT 0

)
CREATE TABLE #nResultl (

Year int,

MA int DEFAULT 0,
MC int DEFAULT O,
MG int DEFAULT O,
UN int DEFAULT DO,
WC int DEFAULTO

398

)
CREATE TABLE #nResultFinal (

Year int,

ADA int DEFAULTOQ,
ASS int DEFAULT 0,
ATT int DEFAULTO,
COM int DEFAULT O,
CON int DEFAULT O,
CRT int DEFAULT 0,
DES int DEFAULT 0,
DMG int DEFAULT O,
DOC int DEFAULT 0,
DUC int DEFAULT O,
EHZ int DEFAULT O,
EXCint DEFAULT O,
FLG int DEFAULT O,
IDQ int DEFAULT 0,
IFC int DEFAULTO,
INA int DEFAULT O,
INF int DEFAULT O,
JDG int DEFAULTOQ,
KNW int DEFAULT O,
LIM int DEFAULT O,
LGT int DEFAULT 0,
MIS int DEFAULT 0,
MNT int DEFAULT O,
OBS int DEFAULT O,
OPS int DEFAULT 0,
PHY int DEFAULT O,
PRB int DEFAULT 0,
PRO int DEFAULT 0O,
RES int DEFAULT 0,
ROU int DEFAULT O,
SKL int DEFAULT O,
TRG int DEFAULT 0,
UNA int DEFAULTOQ,
WXE int DEFAULT 0,
CRW int DEFAULT O,
WRK int DEFAULT 0,
ENV int DEFAULT 0,
EQP int DEFAULTOQ,
ERR int DEFAULT O,
MED int DEFAULT O,
ORG int DEFAULT 0,
RDY int DEFAULT O,
SUP int DEFAULT O,
VIO int DEFAULT 0,
MA int DEFAULT O,
MC int DEFAULT 0,
MG int DEFAULT O,
WC int DEFAULTO

FOR THIRD LEVEL FACTORS

--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [3rdLevelCode], Year INTO

#nTemp3

FROM [vwFlanReports 2-7-Y ear3]

UPDATE#nT emp3
SET Year ='0'
WHERE Year isnull
--Now run the crosstab

INSERT #nResult3

EXEC dbo.rac @grpcol="Y ear',
@pvtcol="[3rdLevel Code]', @transform="count(*)', @from
=#nTemp3', @where=",

@printagg="n',@grand_totals='n',
@row_totals="n', @emptycell='0'

FOR SECOND LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishapID, [2ndLevelCode], Year INTO
#nTemp2

FROM [vwFlanReports2-7-Year?2]

UPDATE #nTemp2
SET Year ='0'
WHERE Year isnull
--Now run the crosstab

INSERT #nResult2

EXEC dbo.rac @grpcol="Y ear',
@pvtcol="[2ndLevel Code]', @transform="count(*)', @from
=#nTemp2', @where=",

@printagg="n",@grand_totals='n',

@row_totals=n’, @emptycel|="0'

FOR FIRST LEVEL FACTORS
--Build atemp table and update the null valuesto 'None"
SELECT MishaplD, [1stLevelCode], Year INTO
#nTempl

FROM [vwFlanReports2-7-Y earl]

UPDATE #nTempl
SET Year ='0'
WHERE Year isnull
--Now run the crosstab

INSERT #nResult1

EXEC dbo.rac @grpcol="Y ear',
@pvtcol=1stLevelCode]', @transform="count(*)', @from
='#nTempl', @where=",

@printagg="n',@grand_totals='n’,

@row_totas='n', @emptycell="0'

INSERT #nResultFinal
SELECT dbo.#nResult3.Y ear,

dbo.#nResult3.ADA, dbo.#nResult3.ASS,
dbo.#nResult3. ATT, dbo.#nResult3.COM,
dbo.#nResult3.CON, dbo.#nResult3.CRT,
dbo.#nResult3.DES,

dbo.#nResult3.DMG,
dbo.#nResult3.DOC, dbo.#nResult3.DUC,
dbo.#nResult3.EHZ, dbo.#nResult3.EXC,
dbo.#nResult3.FLG, dbo.#nResult3.1DQ, dbo.#nResult3.IFC,
dbo.#nResult3.INA, dbo.#nResult3.INF,

dbo.#nResult3.JDG,
dbo.#nResult3.KNW, dbo.#nResult3.L1M,
dbo.#nResult3.LGT, dbo.#nResult3.MIS,
dbo.#nResult3.MNT, dbo.#nResult3.0BS,

dbo.#nResult3.0PS,
dbo.#nResult3.PHY, dbo.#nResult3.PRB,
dbo.#nResult3.PRO, dbo.#nResult3.RES,
dbo.#nResult3.ROU, dbo.#nResult3.SKL,

dbo.#nNResult3.TRG,
dbo.#nResult3.UNA, dbo.#nResult3.WXE,
dbo.#nResult2.CRW, dbo.#nResult2 WRK,,
dbo.#nResult2.ENV, dbo.#nResult2.EQP,
dbo.#nResult2.ERR,

399

dbo.#nResult2.MED,
dbo.#nResult2.0RG, dbo.#nResult2.RDY,
dbo.#nResult2.SUP, dbo.#nResult2.VI10, dbo.#nResultl.MA,
dbo.#nResult1.MC,
dbo.#nResultl. MG,
dbo.#nResultlL.WC
FROM dbo.#nResult3 INNER JOIN
dbo.#nResult2 ON dbo.#nResult3.Y ear
dbo.#nResult2.Year INNER JOIN
dbo.#nResultl ON dbo.#nResult3.Y ear
dbo.#nResultl.Y ear

SELECT #nTemp3.Y ear, Count(Distinct
#nTemp3.Mishapl D) AS TotaMishaps INTO #nResultTotal

From #nTemp3

Group By #nTemp3.Y ear

SELECT dbo.#nResultFina.Year ,
dbo.#nResultFina . ADA, dbo.#nResultFina .ASS,
dbo.#nResultFind . ATT, dbo.#nResultFina .COM,
dbo.#nResultFinal.CON, dbo.#nResultFina .CRT,
dbo.#nResultFinal.DES,

dbo.#nResultFina .DMG,
dbo.#nResultFinal.DOC, dbo.#nResultFina.DUC,
dbo.#nResultFina.EHZ, dbo.#nResultFinal .EXC,
dbo.#nResultFinal .FLG, dbo.#nResultFina.IDQ,
dbo.#nResultFinal.IFC, dbo.#nResultFina.INA,
dbo.#nResultFinal.INF,

dbo.#nResultFinal.JDG,
dbo.#nResultFina . KNW, dbo.#nResultFinal .LIM,
dbo.#nResultFina .LGT, dbo.#nResultFina.MIS,
dbo.#nResultFina .MNT, dbo.#nResultFinal .OBS,

dbo.#nResultFinal.OPS,
dbo.#nResultFina.PHY, dbo.#nResultFinal.PRB,
dbo.#nResultFinal.PRO, dbo.#nResultFinal.RES,
dbo.#nResultFina .ROU, dbo.#nResultFinal.SKL,

dbo.#nResultFinal . TRG,
dbo.#nResultFinal .UNA, dbo.#nResultFina . WXE,
dbo.#nResultFina .CRW, dbo.#nResultFina . WRK,
dbo.#nResultFinal .ENV, dbo.#nResultFinal .EQP,
dbo.#nResultFina .ERR,

dbo.#nResultFina .MED,
dbo.#nResultFina .ORG, dbo.#nResultFina .RDY,
dbo.#nResultFina .SUP, dbo.#nResultFina V10O,
dbo.#nResultFina.MA, dbo.#nResultFina.MC,

dbo.#nResultFina .M G,
dbo.#nResultFina . WC,

dbo.#nResultTotal . TotalMishaps

FROM dbo.#nResultFinal INNER JOIN

dbo.#nResultTota ON

dbl #nResultFinal.Year = dbo.#nResultTotal.Y ear

DROP TABLE #nResultFinal
DROP TABLE #nResultTotal
DROP TABLE #nResult3
DROP TABLE #nResult2
DROP TABLE #nResultl

return

8-0-0-9-NelsonCronoMishaps

Alter Procedure[8-0-0-9-Nel sonCronoMishaps]

As

SELECT tblMishaps.MishapDate, tbIMishaps.Aircraft_FK, tbIMishaps.Class_FK,
tbIMishaps. Type_FK, tbIMishaps.OrglD_FK, tbIMishaps.ShortDescription

FROM thlMishaps
ORDER BY thlMishaps.MishapDate

return

400

9-0-0-1-L ookupswithoutAL L

Alter Procedure[9-0-0-1-flanLookupAircraft]

As
set nocount on

SELECT *FROM dbo.thlAircraft
ORDER BY AircraftTypeModel

Return

Alter Procedure[9-0-0-1-flanL ookupClass]

As
set nocount on

SELECT *FROM dbo.thIMishapClass
ORDER BY MishapClassCode

Return

Alter Procedure[9-0-0-1-flanL ookupDBType]

As
set nocount on

SELECT DatabaseType
FROM dbo.thlDatabaseType
WHERE DatabaseType <> 'O'

Return

Alter Procedure[9-0-0-1-flanL ookupFactors]

As
set nocount on

SELECT *FROM dbo.tblFactors
ORDER BY [3rdLevelDex]

Return

Alter Procedure [9-0-0-1-flanL ookupL ocation]

@DatabaseType varchar(1) ="M"

As

401

set nocount on

SELECT dbo.thlMishapL ocation.MishapL ocationI D,
dbo.thlMishapL ocation.MishapL ocation

FROM dbo.thl DatabaseType INNER JOIN
dbo.tblMishapL ocation ON
dbo.thlDatabaseType.DatabaseType =
dbo.tblMishapL ocation.DatabaseType

WHERE

dbo.tblMishapL ocation.DatabaseType=dbo.tbl DatabaseType.
DatabaseType

ORDER BY dbo.thIMishapL ocation.MishapL ocation

return

Alter Procedure [9-0-0-1-flanL ookupOrganization]

As
set nocount on

SELECT dbo.tblOrganization.OrglD,
dbo.tblOrganization.OrgName

FROM dbo.tblOrganization INNER JOIN
dbo.thlDatabaseType ON dbo.tblOrganization.DatabaseType
= dbo.thlDatabaseType.DatabaseType

WHERE

dbo.thl Organization.DatabaseType=dbo.tbl DatabaseType.Da
tabaseType

ORDER BY OrglD

return

Alter Procedure [9-0-0-1-flanLookupType]

As
set nocount on

SELECT *FROM dbo.tblMishapType
ORDER BY MishapTypeCode

Return

9-0-0-2-L ookupswWithALL

Alter Procedure[9-0-0-2-flanL ookupAircraftAll]

As
set nocount on

SELECT AircraftTypeModd, AircraftCategory,
AircraftDescription FROM dbo.tblAircraft

UNION

Sdlect '<All>' as AllChoice, '<All>' as AllChoice2, '<All>' as
AllChoice3 FROM tblAircraft

ORDER BY AircraftTypeModel

return

Alter Procedure[9-0-0-2-flanL ookupClassAll]

As
set nocount on

SELECT MishapClassCode, MishapClassDefinition FROM
dbo.tbIMishapClass

UNION

Select '<All>" as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblMishapClass

ORDER BY MishapClassCode

Return

Alter Procedure[9-0-0-2-flanL ookupFactorsAll 1L evel]

As
set nocount on

SELECT DISTINCT [1stLevelCode], [1stLevel Desc]
FROM dbo.tblFactors

UNION

SHect '<All>' as AllChoice, '<All>' as AllIChoice2 FROM
dbo.thlFactors

ORDER BY [1stLevelDesq]

return

Alter Procedure[9-0-0-2-flanL ookupFactorsAll2L evel]

As
set nocount on

SELECT DISTINCT [2ndLevelCode], [2ndLevel Desc]
FROM dbo.tblFactors

UNION

402

Select '<All>' as AllChoice, '<All>' as AllChoice2 FROM
dbo.thlFactors

ORDERBY [2ndLevelDex]

Return

Alter Procedure [9-0-0-2-flanL ookupFactorsAll3Level]

As
set nocount on

SELECT DISTINCT [3rdLevelCode], [3rdLevelDesc]
FROM dbo.tblFactors

UNION

Select '<All>' as AllChoaice, '<All>' as AllChoice2 FROM
dbo.thlFactors

ORDER BY [3rdLevelDex]

Return

Alter Procedure[9-0-0-2-flanL ookupL ocationAll]

@DatabaseType varchar(1) ="M"

)

As
set nocount on

SELECT dbo.tblMishapL ocation.MishapL ocationl D,
dbo.thlMishapL ocation.Mishapl ocation

FROM dbo.thlMishapLocation INNER JOIN

dbo.tbl DatabaseType ON

dbo.thIMishapL ocation.DatabaseType =

dbo.thl DatabaseType.DatabaseType

WHERE

dbo.thlMishapL ocation.DatabaseType=dbo.thl DatabaseT ype.
DatabaseType

UNION

Select '<All>" as AllChoice, '<All>' as AllChoice2 FROM
dbo.thlMishapL ocation

ORDER BY dbo.thlMishapL ocation.MishapL ocation

Return

Alter Procedure[9-0-0-2-flanL ookupOrganizationAll]

As
set nocount on

SELECT dbo.thlOrganization.OrgID,
dbo.tblOrganization.OrgName

FROM dbo.tblOrganization INNER JOIN
dbo.thIDatabaseType ON dbo.tbl Organization.DatabaseType
= dbo.thlDatabaseType.DatabaseType

WHERE

dbo.thl Organization.DatabaseType=dbo.tbl DatabaseType.Da
tabaseType

UNION

Select '<All>" as AllChoice, '<All>' as AllChoice2 FROM
dbo.tblOrganization

ORDER BY OrgID

return

Alter Procedure[9-0-0-2-flanLookupTypeAll]

As
set nocount on

403

SELECT MishapTypeCode, MishapTypeDefinition FROM
dbo.tblMishapType

UNION

Select '<All>" as AllChoaice, '<All>" as AllChoice2 FROM
dbo.tbIMishapType

ORDER BY MishapTypeCode

return

Alter Procedure[9-0-0-2-flanModifiedL ookupY ear]

As
set nocount on

SELECT DISTINCT
DatePart("yyyy",[tbIMishaps].[MishapDate]) AS Exprl
FROM dho.tbiMishaps;

return

RAC

RAC is an application that runs on SQL Server and produces 2 dimensional cross-
tab reports. It was designed by Steve Dassin and was included in HFACS with his
permission [Ref. 31].

RAC has various options that make it possible to enhance the traditional Access-
JET cross-tab functionality by providing additional capabilities over those in Access.
RAC has a number of report like format capabilities that enhance the appearance of table
data. In addition to producing cross-tab reports, RAC can be used to transpose fields,
split delimited strings and create delimited strings. RAC is written in transact-SQL
exclusively for SQL Server version 7.0 and above. A set oriented approach is employed
in most places and RAC does NOT use any cursors.

404

10.

11.

12.

13.

LIST OF REFERENCES

Schmidt, J. & Lawson, D., Aviation Maintenance Human Factors Accident
Analysis. Power Point Presentation. Adapted form Reason’s Swiss Cheese
Model. Monterey, CA: School of Aviation Safety, 2000.

Wood, B. P, Information Management System development for the
Characterization and Anaysis of Human Error in Naval Aviation Maintenance
Related Mishaps, 2000.

NOOS Aviation Safety Home Page, Operationa & Risk Management,
http://www.navres.navy.mil/navresfor/navair/safety/av_saftey.html.

United States Navy Aviation Safety Center Home Page, Aviation Directorate
HFACS-ME,
http://www.saf ety center.navy.mil/aviation/Presentations/ghfamme6/sld005.htm

Booch, Rumbaugh, & Jacobson M., The Unified Modeling Language User Guide.
Addison Wesley Longman Inc., Reading, MASS, 1997.

Kent Beck & Ward Cunningham, OOPSLA'89 Conference Proceedings, October
1-6, New Orleans, Louisiana, 1989.

Muller, Robert J., Database Design for Smarties Using UML for Data Modeling.
Morgan, Kaufmann Publishers, San Francisco, CA., 1999.

Blackburn, lan, Professional Access 2000 Programming. Wrox Press Ltd.,
Birmingham, UK, 2000.

Doyle, Casey D., Microsoft Office 97 Visual Basic Programmer’'s Guide.
Microsoft Press, Redmond, Washington, 1997.

Doyle, Casey D., Microsoft Office 97 Resource Kit. Microsoft Press, Redmond,
Washington, 1997.

Halvorson, Michael, Step-by-Step Microsoft Visual Basic 6.0. Microsoft Press,
Redmond, Washington, 1998.

Prague & Irwin, Microsoft Access 2000 Bible. IDG Books Worldwide, Inc.,
Foster City, CA., 1999.

Solomon, Christine, Microsoft Office 97 Developer's Handbook. Microsoft
Press, Redmond, Washington, 1997.

405

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Williams, Charles, Professiona Visual Basic 6 Databases, Wrox Press,
Birmingham, UK., 1999.

Universal Data Access Web Site, ActiveX Direct Objects,
http://www.microsoft.com/data/ado/default.ntm

Microsoft Web Site, Upgrading to Access 2002,
http://www.microsoft.com/Office/ ORK /xp/WEL COM E/depf05.htm.

Microsoft Developer Network Web Site, Upgrading Visua Basic 6.0
Applications To Visual Basic.NET,
http://msdn.microsoft.com/vstudio/nextgen /technol ogy/vbupgrade.asp.

Microsoft Developer Network Web Site, Preparing Your Visua Basic 6.0
Applications for the Upgrade to Visual Basic.NET,
http://msdn.microsoft.com/library/default.asp?URL =/library/techart/vb6tovbdotne
t.htm.

Boehm, Barry, Software Risk Management, |EEE Computer Society Press, 1989.

Microsoft Product Support Services Web Site, Frequently Asked Question - SQL
Server 2000 - Upgrade,
http://support.microsoft.com/support/kb/articles/Q261/3/34.ASP.

Microsoft MSDN Online Magazine Web Site, SQL Server and DMO: Distributed
Management Objects Enable Easy Task Automation,
http://msdn.microsoft.com/msdnmag/i ssues/01/05/sgldmo/sgldmo.asp.

Microsoft Product Support Services Web Site, Incompatibility Issues Between
Access 2000 Projects and SQL Server 2000,
http://support.microsoft.com/support/kb/articles/Q269/8/24.ASP.

Microsoft Office Web Site, Access 2000 and SQL Server 2000 Readiness Update,
http://office.microsoft.com/downl oads/2000/A ccsgl .aspx.

Microsoft MSDN Online Library Web Site, Distributing Custom Icons with Y our
Microsoft Office 2000 Applications,
http://msdn.microsoft.com/library/default.asp.

Shappell, S. & Wiegmann, D., A Human Factors Analysis of Post-Accident Data:
Applying Theoretical Taxonomies of Human Error and A Human Error Approach
to Accident Investigation: The Taxonomy of Unsafe Operations, The
International Journal of Aviation Psychology, 7, (4), 67-81 & 269-291, 1997.

406

26.

27.

28.

29.

30.

31.

32.

33.

Schmidt, J., Schmorrow, D., & Hardee, M. A., Preliminary Human Factors
Analysis of Naval Aviation Maintenance Related Mishaps (983111), Society of
Automotive Engineers, Inc., 1997.

Reason, J., Human Error. Cambridge, UK: Cambridge Press, 1990.

Heinrich, H., Industrial Accident Prevention, 4th ed. New York, NY: McGraw-
Hill, 1959.

Edwards, E., Introductory Overview from Human Factorsin Aviation, (Weiner, E.
L. & Nagd, D.C., Eds.) San Diego, CA: Academic Press. 3-25, 1988.

Raghu Ramkrishnan & Johannes Gehrke, Database Management Systems.
McGraw-Hill Companies Inc., Boston, MA., 2000.

Replacement For Access Crosstab Website, Steve Dassin,
http://www.angelfire.com/ny4/rac/.

Schmidt, J. (1998). Human Factors Accident Classification System Analysis of
Selected National Transportation Safety Board Maintenance Related Mishaps,
Chapter 8. Unpublished Manuscript.

Schmorrow D. A Human Error and Analysis Model of Naval Aviation
Maintenance Related Mishaps, Master’s Thesis, Operations Research
Department, Naval Postgraduate School, Monterey, CA (1998).

Fry, A.D. Modeling and Analysis of Human Error in Naval Aviation Maintenance
Mishaps, Master’s Thesis, Operations Research Department, Naval Postgraduate
School, Monterey, CA (2000).

407

THISPAGE INTENTIONALLY LEFT BLANK

408

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Ft. Belvoir, Virginia

Dudley Knox Library
Naval Postgraduate School
Monterey, California

CAPT John K. Schmidt (NAVY)
Naval Safety Center

Norfolk, Virginia

brainsgzer @aol.com

CAPT(R) George Zalla
Naval Postgraduate School
Monterey, California
gazolla@nps.navy.mil

Professor Thomas Wu
Naval Postgraduate School
Monterey, California
ctwu@nps.navy.mil

LtCDR Chris Eagle (NAVY)
Naval Postgraduae School
Monterey, California
cseagle@cs.nps.navy.mil

MAJ Thomas P. Flanders (ARMY)
Naval Postgraduate School
Monterey, California
tpflande@nps.navy.mil

MAJ Scott K. Tufts (ARMY)
Naval Postgraduate School
Monterey, California
sktufts@nps.navy.mil

409

Chairman, Computer Science Department
Naval Postgraduate School

Monterey, California
cschair@nps.navy.mil

410

